The communication networks (mobile phone networks, social media platforms) produce digital traces from their usages. This type of information help to understand and analyze the human mobility in very accurate way. By these analyzes over cities, it can give powerful data on daily citizen activities, urban planners have in that way, relevant indications for decision making on design and development. As well as, the Call detail Records (CDRs) provides valuable spatiotemporal data at the level of citywide or even nationwide. The CDRs could be analyzed to extract the life patterns and individuals mobility in an observed urban area and during ephemeral events. Whereas, their analysis gives conceptual views about human density and mobility patterns. In this study, the mobile phone traces concern an ephemeral event called Armada in Rouen city. However, important densities of individuals are analyzed and are represented to extract the life patterns by classifying the most active regions during observed period in this urban area. Then, the collective mobility patterns are investigated in aggregated urban mobility patterns via extracting the universal mobility law (power-law distribution). This investigation explores the characteristics of human mobility patterns, and model them mathematically depending on substantial parameters, that are the inter-event time, traveled distances (displacements), and the radius of gyration. The main purpose of this study is to determine the general pattern law of the population. And, its contribution is the resulting outcomes, which are revealed and visualized in both static and dynamic perspectives. They can be capitalized as guidelines to explore the urban pulse and life patterns. The numerical simulation results endorse the previous investigations. Hence, they found that the real system patterns almost follow an exponential distribution. Additionally, the experiments classified the mobility patterns into major classes as general, work, and off days. Keywords : Complex systems, urban, mobility, CDRs, mobile phone, spatio-temporal, network, radius of gyration, individual trajectory, city pulse, simulation, power-law distribution.
Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show More
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi