Preferred Language
Articles
/
uRYavooBVTCNdQwCg6Rk
Adaptive Modeling of Urban Dynamics With Mobile Phone Database
...Show More Authors

The communication networks (mobile phone networks, social media platforms) produce digital traces from their usages. This type of information help to understand and analyze the human mobility in very accurate way. By these analyzes over cities, it can give powerful data on daily citizen activities, urban planners have in that way, relevant indications for decision making on design and development. As well as, the Call detail Records (CDRs) provides valuable spatiotemporal data at the level of citywide or even nationwide. The CDRs could be analyzed to extract the life patterns and individuals mobility in an observed urban area and during ephemeral events. Whereas, their analysis gives conceptual views about human density and mobility patterns. In this study, the mobile phone traces concern an ephemeral event called Armada in Rouen city. However, important densities of individuals are analyzed and are represented to extract the life patterns by classifying the most active regions during observed period in this urban area. Then, the collective mobility patterns are investigated in aggregated urban mobility patterns via extracting the universal mobility law (power-law distribution). This investigation explores the characteristics of human mobility patterns, and model them mathematically depending on substantial parameters, that are the inter-event time, traveled distances (displacements), and the radius of gyration. The main purpose of this study is to determine the general pattern law of the population. And, its contribution is the resulting outcomes, which are revealed and visualized in both static and dynamic perspectives. They can be capitalized as guidelines to explore the urban pulse and life patterns. The numerical simulation results endorse the previous investigations. Hence, they found that the real system patterns almost follow an exponential distribution. Additionally, the experiments classified the mobility patterns into major classes as general, work, and off days. Keywords : Complex systems, urban, mobility, CDRs, mobile phone, spatio-temporal, network, radius of gyration, individual trajectory, city pulse, simulation, power-law distribution.

Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Modeling Extreme COVID-19 Data in Iraq
...Show More Authors

     This paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Visual Modeling Language for Agent Treasury Pharmaceutical
...Show More Authors

The researches to discover useful ways to represent the agents and agent-based
systems are continuous. Unified Modeling Language (UML) is a visual modeling language
used for software and non software modeling systems. The aim of this paper is: using UML
class diagram to design treasury pharmaceuticals agent and explain its internal action. The
diagram explains the movement of the agent among other nodes to achieve user's requests
(external) after it takes them. The paper shows that it is easy to model the practical systems by
using agent UML when they are used in a complex environment.

View Publication Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modeling Dynamic Background based on Linear Equation
...Show More Authors

     Detection moving car in front view is difficult operation because of the dynamic background due to the movement of moving car and the complex environment that surround the car, to solve that, this paper proposed new method based on linear equation to determine the region of interest by building more effective background model to deal with dynamic background scenes. This method exploited the permitted region between cars according to traffic law to determine the region (road) that in front the moving car which the moving cars move on. The experimental results show that the proposed method can define the region that represents the lane in front of moving car successfully with precision over 94%and detection rate 86

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jul 07 2020
Journal Name
Journal Of Mechanical Engineering Research & Developments
NOISE EFFECTS IN SKILL DISCRETION AND MODELING
...Show More Authors

Diesel generators is widely used in Iraq for the purpose of maintaining electric power demand. Large number of operators engaged in this work encounters high level of noise generated by back pack type diesel generators used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known., in present research , quastionaire was adsministered 86 repondents in Baghdad city were exposured to wide range of noise level (80-110) dB(A) with different ages and they have different skill discretion levels. Noise levels A-weigthed decibles dB(A) were measured over 8 weeks two times aday during the 2019 summer using a sound level meter.For predicting the wo

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Modeling and Filtering for Tracking Maneuvering Targets
...Show More Authors

     A new mathematical model describing the motion of manned maneuvering targets is presented. This model is simple to be implemented and closely represents the motion of maneuvering targets. The target maneuver or acceleration is correlated in time. Optimal Kalman filter is used as a tracking filter which results in effective tracker that prevents the loss of track or filter divergency that often occurs with conventional tracking filter when the target performs a moderate or heavy maneuver. Computer simulation studies show that the proposed tracker provides sufficient accuracy.

 

View Publication Preview PDF
Publication Date
Mon Dec 26 2011
Journal Name
Journal Of Intelligent Material Systems And Structures
Design and modeling magnetorheological directional control valve
...Show More Authors

Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The

... Show More
View Publication
Scopus (29)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Statistical Sciences
Use the robust RFCH method with a polychoric correlation matrix in structural equation modeling When you are ordinal data
...Show More Authors

View Publication
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia

... Show More
View Publication Preview PDF
Crossref