The communication networks (mobile phone networks, social media platforms) produce digital traces from their usages. This type of information help to understand and analyze the human mobility in very accurate way. By these analyzes over cities, it can give powerful data on daily citizen activities, urban planners have in that way, relevant indications for decision making on design and development. As well as, the Call detail Records (CDRs) provides valuable spatiotemporal data at the level of citywide or even nationwide. The CDRs could be analyzed to extract the life patterns and individuals mobility in an observed urban area and during ephemeral events. Whereas, their analysis gives conceptual views about human density and mobility patterns. In this study, the mobile phone traces concern an ephemeral event called Armada in Rouen city. However, important densities of individuals are analyzed and are represented to extract the life patterns by classifying the most active regions during observed period in this urban area. Then, the collective mobility patterns are investigated in aggregated urban mobility patterns via extracting the universal mobility law (power-law distribution). This investigation explores the characteristics of human mobility patterns, and model them mathematically depending on substantial parameters, that are the inter-event time, traveled distances (displacements), and the radius of gyration. The main purpose of this study is to determine the general pattern law of the population. And, its contribution is the resulting outcomes, which are revealed and visualized in both static and dynamic perspectives. They can be capitalized as guidelines to explore the urban pulse and life patterns. The numerical simulation results endorse the previous investigations. Hence, they found that the real system patterns almost follow an exponential distribution. Additionally, the experiments classified the mobility patterns into major classes as general, work, and off days. Keywords : Complex systems, urban, mobility, CDRs, mobile phone, spatio-temporal, network, radius of gyration, individual trajectory, city pulse, simulation, power-law distribution.
The tourism industry has become, currently, an art, an industry and a science. It is also one of the components that make up touristic regions. Tourist attractions are no longer the exclusive visits of museums and archeological sites, but also involve other service facilities. It is, therefore, imperative that the authorities should become aware of the degradation of tourist resorts and prevent them from getting worse. Moreover, the authorities should take a set of decisions concerning the protection of the urban aspect with its historical, social, and environmental dimensions, as well as, adapting it to the modern requirements that can bring comfort to the citizens and tourists at physical and psychological levels.
The aim of the research is to identify the extent of the direct and indirect relationship of the population growth of the cities as a result of the urbanization process witnessed by the Arab region for the urban development of the city structures and their formative structures, changing the planning criteria of some cities and the extent of their changes in spatial and temporal dimensions and their relation to the standards of the western cities. In changing the concept of the modern Arab city, such as the emergence of new functional uses affecting the change in the pattern of formal formations of its urban fabric associated with its ancient morphology and distinctive human nature. The research seeks to identify the extent to which plann
... Show MoreAbstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how glucose excess, estrogen excess, and anxiety work together to affect the speed at which breast cancer cells multiply and the immune system’s response model is necessary to conceive of ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological panic, glucose excess, and estrogen excess on the interaction of cancer and immunity. The proposed model is precisely described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish four equilibrium positions. The stability analys
... Show More