Rheumatoid arthritis is a chronic inflammatory autoimmune disease its etiology is unknown. The classical autoimmune diseases, have adaptive immune genetic associations with autoantibodies and major histocompatibility complex (MHC) class II such as rheumatoid arthritis (RA), diabetes mellitus type two (DM II). Serum of99 males suffering from RA without DMII as group (G1), 45 males suffering from RA with DM II as group (G2) and 40 healthy males as group (G3) were enrolled in this study to estimation of alkaline phosphates (ALP), C-reactive protein (CRP) and Pentraxin-3(PTX). Results showed a highly significant increase in PTX3 levels in G1 and G2 compared to G3 and a significant decrease in G1comparing to G2. Results also revealed a significant increase in CRP levels in G1 and G2 when compared to G3, as well as a significant increase in G2 comparing to G1. Results showed a significant decrease in ALP levels in G1 and G2 while this phrase must no differences was observed betweenG1 and G2and there was no significant positive correlation between PTX3 and ALP in sera of RA males’ patients with and without DM II it be showed in our study.
The research stems from its goal of identifying the impact of visual management on the strategic acceleration of business organizations and the state of this effect through the knowledge embedding in the Iraqi oil companies. The oil sector was tested, represented by (3) oil companies, and a sample of (151) individuals who participated in activating the visual management, distributed in higher management levels. The research relied on the descriptiveanalytical approach and the questionnaire was a main tool for collecting data and information. The results showed that visual management positively affects strategic acceleration. Moreover, This effect is amplified by the mediating role played by Embedding Knowledge.
The aim of the research is to design a test with cognitive achievement through the use of the inverted class strategy for some basic soccer skills for gyms for first-average students, within the curriculum of the Ministry of Education, where the researcher used the experimental approach. For the same division (B) and the number of each group (10) students, i.e. the total total of the research sample (20) students, and the pre-test for the research sample was applied through the design of the test prepared by the research after which the educational program with the strategy was applied to the research sample and continued (8) weeks after Completion of the tutorial has been post-tested for the research sample, In it, he reached significant r
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreExperimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6- bladed rotor of both profiles within range of blade pitch angles . A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency and el
... Show MoreIn every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More