Activated carbon (AC) is a highly important adsorbent material, as it is a solid form of pure carbon that boasts a porous structure and a large surface area, making it effective for capturing pollutants. Thanks to its exceptional features, AC is widely used for purifying water that is contaminated with odors and removing dyes in a cost-effective manner. A variety of carbonic materials have been employed to prepare AC, and this study aimed to evaluate the suitability of utilizing waste mango and avocado seeds for this purpose, followed by testing their efficacy in removing dye from aqueous solutions. The results indicate that using waste mango and avocado as AC is technically feasible, achieving dye removal percentages of 98% and 93%, respectively. Equilibrium isotherms were explained using Langmuir and Freundlich adsorption models, with the former proving to be the best fit for the experimental data (R2=0.99). Additionally, adsorption kinetics were analyzed and found to be well represented by the pseudo-2nd kinetic model.
The oxidative degradation of Orange G dye by nanosized CeO2 catalyst has been performed in this study. The catalyst was prepared by precipitation method. Various characterization techniques were carried out to study the physical and chemical properties of the synthesized catalyst. The XRD result confirms well the formation of CeO2 cubic phase. The FTIR result showed the effect of calcination temperature for CeO2 was clearly observed due to reduction in band intensity compared to uncalcined Ce nitrate sample. Meanwhile, the diffused reflection spectra recorded reflection spectra at 414 nm with an energy gap of 3.2 ev. The decolorization of Orange G dye by oxidation process were carried out unde
... Show MoreAlbizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi
... Show MoreAlbizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi
... Show MoreBimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400◦ C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –
... Show MoreThis paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreABSTRACT
This study was conducted in the poultry field of the department of animal production, college of agricultural engineering sciences, university of Baghdad for the period from 10/15/2021 to 11/25/2021 with the aim of showing the effect of adding different levels of dill seeds to the diet on productive and carcass traits For broiler meat. In this study, 200 unsexed broiler chicks of breed (Ross 308) were used, one day age, with a starting weight of 41.46 g. The chicks were randomly distributed to 5 treatments, and each treatment included 4 replicates, 10 birds for each replicate. The birds were fed three diets: the starter diet, the growth diet and the final diet. The experiment treatments were T1,
... Show MoreDrastic threat to the natural system is caused by the uncontrolled release of synthetic pollutants, including azo dyes. This study centered on the decolorization and biodegradation of water soluble azo dye reactive blue (RB) in a batch mode sequential anaerobic-aerobic processes. A local sewage treatment plant was the source where activated sludge was collected to be used as non-adapted mixed culture with both free and the alginate immobilized cells for RB biodegradation. Under anaerobic conditions, the free and immobilized mixed cells were proved to completely decolorize 10 mg/ L of RB within 20 and 30 h, respectively. Alginate- immobilized mixed cells, resulted in 88%, 87%, and 87% maximum COD removals with samples con
... Show More