The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of 30.6, 20.8, and 100%, respectively. There was also a 53.6% increase in absorbed energy at the ultimate load. The shear reinforcement arrangement had a greater impact and a significant effect on the structural response than the number of lacing bars. For lacing reinforcement with a phase difference equivalent to the half-lacing cycle (i.e., phase lag lacing), the percentage of improvement under different loading stages was 6.7-27.1% and 20.8-113.3%, respectively. The structural responses are significantly impacted by the lacing arrangement; members with two and three lacing bars, respectively, exhibited improvements in ultimate load of 30.6% and 47%. Beyond the yielding stage, the phase lag lacing specimens deviated from those without phase lag lacing and normal shear stirrups because of the lacing contribution. Phase lag specimens showed more strain than specimens without phase lag lacing, meaning that the lacing reinforcement contributed more to the beam strength. It was found that the first shear cracking load of all the laced reinforced specimens was higher than that of the conventional shear stirrup specimens. Phase lag lacing produced the greatest improvement, with two bars achieving 92.44% and three bars achieving 217.07%. For the aforementioned number of bars, lacing shear reinforcement without phase lag was less successful, with 36.91% and 46.53%, respectively. Doi: 10.28991/CEJ-2025-011-02-019 Full Text: PDF
In this investigation a high density polyethylene (HDPE) was used as a substitute to polyvinylchloride in the production of lead acid battery separators. This has been achieved by preparing mixtures of different percentages of the feed materials which include a high density polyethylene (HDPE) locally produced, filler materials such as silica and oils such as dioctylphthalate (DOP) or paraffin which were added to the mixture to improve the final properties of the separator. The materials were compounded by two roll-mills under the same conditions. The following parameters are involved: &nb
... Show MoreThe nonlinear optical properties response of nematic liquid crystal (6CHBT) and the impact of doping with two kinds of nanoparticles; Fe3O4 magnetic nanoparticles and SbSI ferroelectric nanoparticles have been studied using the non-linear dynamic method through z-scan measurement technique. This was achieved utilizing CW He-Ne laser. The pure LC and magnetic LC nanoparticle composite samples had a maximum absorption while the ferroelectric LC nanoparticle composite had a minimum absorption of the incident light. The nonlinear refractive index was positive for the pure LC and the rod-like ferronematic LC composite samples, while it was negative for the ferroelectric LC composite. The studying of the nonlinear optical
... Show MoreOne of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MoreIn this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.
The study of green colour in glass has a special importance on the glass quality, specially the effect of ferrous oxides content of the limestone. Results obtained that there was a reduction in green colour when different ferrous oxide contents in the limestone were added in glass production, limestone sources from two quarries, and the first contains 0.67% ferrous oxide and the second posses less ferrous oxide.
Reduction of green colour showed higher transmittance12% and it could be suggested that reduction of ferrous oxides content in the limestone is of special importance on the optical properties of glass.
In this paper, we define some generalizations of topological group namely -topological group, -topological group and -topological group with illustrative examples. Also, we define grill topological group with respect to a grill. Later, we deliberate the quotient on generalizations of topological group in particular -topological group. Moreover, we model a robotic system which relays on the quotient of -topological group.
The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
In this study the adsorption of cefixime on to selected Iraqi clay bentonite. The aim of this study is to search for selective active surface in adsorption of the drug and to act as physical antidotes in treatment of poisoning if the drug is taken in quantities higher than the recommended dosages. Quantitative estimation of the drug adsorption has been done by utilizing the technique of UV spectrophotometry in λmax (273) nm at different conditions of temperature (25, 37, 45) ˚C found the adsorption decrease with increase the temperature. Study of clay weight of bentonite (0.1-1.5) gm found the adsorption increase with increase of clay weight, study effect of pH (1.2, 3, 5, 7) on adsorption of bentonite found the optimum adsorption
... Show More