Preferred Language
Articles
/
uBitA5gBVTCNdQwCUql4
Improving the Reliability of Evolutionary Algorithm for Complex Detection in Noisy Protein-Protein Interaction Networks
...Show More Authors

Evolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological process, and cellular component is used to get the functional domain. The reliability of the proposed algorithm is examined against the algorithms proposed in the literature. To this end, a yeast protein-protein interaction dataset is used in the assessment of the final quality of the algorithms. To make fake negative controls of PPIs that are wrongly informed and are linked to the high-throughput interaction data, different noisy PPINs are created. The noisy PPINs are synthesized with a different and increasing percentage of misinformed PPIs. The results confirm the effectiveness of the extended evolutionary algorithm design to utilize the biological knowledge of the gene ontology. Feeding EA design with GO annotation data improves reliability and produces more accurate detection results than the counterpart algorithms.

Scopus Crossref
View Publication
Publication Date
Mon Apr 19 2010
Journal Name
Computer And Information Science
Quantitative Detection of Left Ventricular Wall Motion Abnormality by Two-Dimensional Echocardiography
...Show More Authors

Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (27)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Iraqi Journal Of Veterinary Sciences
Isolation and molecular detection of enterotoxigenic Staphylococcus aureus from raw milk of cows
...Show More Authors

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 10 2024
Journal Name
Nanotechnology
Improving the targeted delivery of curcumin to esophageal cancer cells via a novel formulation of biodegradable lecithin/chitosan nanoparticles with downregulated miR-20a and miR-21 expression
...Show More Authors
Abstract<p>Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds’ delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring t</p> ... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Interior Visual Intruders Detection Module Based on Multi-Connect Architecture MCA Associative Memory
...Show More Authors

Most recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Biochemical & Cellular Archives
STUDY ON ABILITY OF PROTEUS MIRABILIS ISOLATED FROM BURNS AND WOUNDS INFECTIONS TO BIOFILM FORMATION AND DETECTION URE C GENE RESPONSIBLE FOR PRODUCE UREASE ENZYME
...Show More Authors

A total of 200 clinical samples included Burns and Wounds infections were collected from Baghdad Governorate. Results showed that rate all isolates of P. mirabilis was 31(15.5%) and rate of Burns infections was 14 (45%) and rate of wounds infection 17 (55%). Where was diagnostic based on conventional biochemical tests and confirmed by the Vitek-2 Compact system and the specific primer of the16SrRNA gene, the ability of bacterial isolates to biofilm formation to be studied. It's considered an important virulence factor in Incidence of diseases and play important role in increasing resistance to antibiotic of encased bacteria, by two methods Congo Red Agar method and Microtiter Plate method. The Congo Red Agar method showed that most isolates

... Show More
Scopus
Publication Date
Sun Jan 03 2016
Journal Name
Journal Of Educational And Psychological Researches
The effect of the probing questions in the collection of literature for students of the Kurdish language department in the College of Education / Ibn Rushd for the Humanities
...Show More Authors

    The goal of this research to identify the effect of the probing questions in the collection of material literature with students of the Kurdish language department, to achieve the aim of the research, the researcher has chosen a sample from the students of third stage of the Kurdish language Department, Faculty of Education / Ibn Rushd as a field for the application of experiment.The number of sample  reached (71) students divided into two groups represented two divisions of the experimental groups under study to the style of questions sounding by (35) students, and represented the other division of the control group, which studied in the way normal and by (36) students, as rewarded r

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Ieee Xplore
A Hybrid Modified Lightweight Algorithm Combined of Two Cryptography Algorithms PRESENT and Salsa20 Using Chaotic System
...Show More Authors

Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterizes the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is a

... Show More
Scopus (30)
Crossref (15)
Scopus Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
OPTIMAL DESIGN OF MODERATE THICK LAMINATED COMPOSITE PLATES UNDER STATIC CONSTRAINTS USING REAL CODING GENETIC ALGORITHM
...Show More Authors

The objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.

View Publication Preview PDF
Crossref