Face Identification system is an active research area in these years. However, the accuracy and its dependency in real life systems are still questionable. Earlier research in face identification systems demonstrated that LBP based face recognition systems are preferred than others and give adequate accuracy. It is robust against illumination changes and considered as a high-speed algorithm. Performance metrics for such systems are calculated from time delay and accuracy. This paper introduces an improved face recognition system that is build using C++ programming language with the help of OpenCV library. Accuracy can be increased if a filter or combinations of filters are applied to the images. The accuracy increases from 95.5% (without applying any filter) to 98.5% when applying a combination of Bilateral filter, Histogram Equalization and Tan and Triggs Algorithm. Finally, the results show degradation in accuracy and increasing in recognition time if images database get bigger.
In this paper the queuing system (M/Er/1/N) has been considered in equilibrium. The method of stages introduced by Erlang has been used. The system of equations which governs the equilibrium probabilities of various stages has been given. For general N the probability of j stages of service are left in the system, has been introduced. And the probability for the empty system has been calculated in the explicit form.
After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreGlobal virtual teams (GVTs) are a recent organizational adaptation created to meet the needs of globalizatized marketplace. GVTs are essentially teams that are distributed across national boundaries and concerned through advanced information and communication technology (ICT) such as email, instant messaging, and video conferencing. The research on GVTs is important in the information system (IS) field because GVTs are dependent on information communication technology and the use of other technologies; GVTs also consists of people from different cultures. This paper tried to answer two research questions. The first one is: what are the GVTs problems facing the project manager (PM). A literature review was conducted to answer the fir
... Show MoreRationing is a commonly used solution for shortages of resources and goods that are vital for the citizens of a country. This paper identifies some common approaches and policies used in rationing as well asrisks that associated to suggesta system for rationing fuelwhichcan work efficiently. Subsequently, addressing all possible security risks and their solutions. The system should theoretically be applicable in emergency situations, requiring less than three months to implement at a low cost and minimal changes to infrastructure.
Active worms have posed a major security threat to the Internet, and many research efforts have focused on them. This paper is interested in internet worm that spreads via TCP, which accounts for the majority of internet traffic. It presents an approach that use a hybrid solution between two detection algorithms: behavior base detection and signature base detection to have the features of each of them. The aim of this study is to have a good solution of detecting worm and stealthy worm with the feature of the speed. This proposal was designed in distributed collaborative scheme based on the small-world network model to effectively improve the system performance.
This research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri