The compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created comp
... Show MoreInvestigation of mesomorphic properties of new 1,3,4-thiadiazolines (which are synthesised via many steps in Scheme 1) was carried out in this study. These compounds are designed to have a heterocyclic unit, a carboxylate linkage group and a polar ether chain at the end of the molecule adjacent to the benzene ring, which enhance the dipolar interactions forces (varied from one to eight carbons) to investigate the association properties of their phases. The structure of the target compounds and the intermediates were confirmed by 1H NMR, 13C NMR, mass and FTIR spectral techniques. Polarised microscopic studies revealed that all the compounds in the series exhibited enantiotropic liquid crystalline properties. This was further confirmed using
... Show MoreIn the present study benzofuran based chalcones 1 (a, b) are synthesized by condensing aromatic aldehydes with 2-acetylbenzofuran in the presence suitable base. These chalcones are very useful precursors for the synthesis of pyrazoline, isoxazoline, pyrmidine, cyclohexenone and indazole derivatives. All these compounds are characterized by their melting points, FTIR and 1 HMNR (for some of them) spectral dat
Abstract The Synthesis in good yields of some new 1,8-Naphthyridine derivatives (1-9) and characterized on the basis of IR and 1H NMR spectra data. The compounds (1) and (6) were utilized as a starting material for the preparing of these compounds.
The synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40 -bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30 -dimethyl-[1,10 -biphenyl]-4,40 -diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1 H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed
... Show MoreThe new azo dye was synthesized via the reaction of the diazonium salt form of 3-aminophenol with 2-hydroxyquinoline. This dye was then used to access a series of complexes with the chlorides of manganese, iron, zinc, cadmium, and vanadium sulfate. The prepared ligand and its complexes were characterized by FT-IR spectroscopy, UV-visible spectroscopy, mass spectrometry, thermogravimetric analysis, differential scanning calorimeter, and microelemental analysis. Conductivity, magnetic susceptibility, metal content, and chlorine content of the complexes were also measured. The ligand and cadmium complex were identified using1H NMR and 13C NMR spectroscopy. The results showed that the shape of the ligand is a trigonal planner, and the c
... Show MoreThe purpose of my thesis is to synthesis two new bidentate ligands which were used to prepare series of metal complexes by reacting the ligands with (M+2 = Mn, Co, Ni, Cu, Cd and Hg) Succinyl chloride was used as starting material to synthesis two bidentate ligands (L1) and (L2) by reaction it with 4-chloroaniline (L1) and (4-aminoacetophenone) (L2) in dichloromethane as a solvent, that are: (L1) = N1,N4-bis (4-chloro phenyl ) succinamide (L2) =N1,N4-bis(4-acetylphenyl)succinamide The new ligands were characterize by using spectroscopic study (Fourier-transform infrared spectroscopy (FT-IR), electronic spectra ( UV-Vis) ,nuclear magnetic resonance(1H,13C-NMR), Mass spectra
... Show More