Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative study of several classification algorithms by testing 12 different classifiers using two international datasets to provide an accurate indicator of their efficiency and the future possibility of combining efficient algorithms to achieve better results. Finally, building several CBC datasets for the first time in Iraq helps to detect blood diseases from different hospitals. The outcome of the analysis step is used to help researchers to select the best system structure according to the characteristics of each dataset for more organized and thorough results. Also, according to the test results, four algorithms achieved the best accuracy (Logitboost, Random Forest, XGBoost, Multilayer Perceptron). Then use the Logitboost algorithm that achieved the best accuracy to classify these new datasets. In addition, as future directions, this paper helps to investigate the possibility of combining the algorithms to utilize benefits and overcome their disadvantages.
BACKGROUND: Anemia during pregnancy is still a challenge throughout the world, and it may cause severe health consequences in the maternal and fetal sides. AIM: This study aims to find out the prevalence of maternal anemia and potential adverse outcomes in Iraq. METHODS: In Medical City Tertiary Center in Baghdad, singleton pregnant ladies came for delivery were involved over 6 months’ period. Based on hemoglobin (Hb) readings; they were divided into no anemia group (Hb>11 g/l) and anemia group which were further subdivided into mild, moderate, and severe (Hb =10–10.9, =7.1–9.9, and <7 g/l, respectively). Full history and examination were performed by attending obstetrician and pediatrician for the upcoming babies. RE
... Show MoreMany approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreThe aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
Abstract
For sparse system identification,recent suggested algorithms are -norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration process by de
... Show MoreRegistration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration p
... Show MoreLong memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreEnrollment in kindergarten child accomplishes many positive aspects, that’s what Im sure a lot of modern educational trends in child education preschool in the importance of exposing children to a variety of sensory stimuli that contribute to impart a range of sound concepts.
Current research aims to know:
1.the level of sensory perception in the first primary grade students a sample search.
2.differences in perception of elementary first-graders with variable gender male, female)) 3.differences in perception of the first primary grade students attending and not attending kindergarten in accordance with variable attendance (attending, not attending).
school students (first grade) from attendi
... Show More