Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative study of several classification algorithms by testing 12 different classifiers using two international datasets to provide an accurate indicator of their efficiency and the future possibility of combining efficient algorithms to achieve better results. Finally, building several CBC datasets for the first time in Iraq helps to detect blood diseases from different hospitals. The outcome of the analysis step is used to help researchers to select the best system structure according to the characteristics of each dataset for more organized and thorough results. Also, according to the test results, four algorithms achieved the best accuracy (Logitboost, Random Forest, XGBoost, Multilayer Perceptron). Then use the Logitboost algorithm that achieved the best accuracy to classify these new datasets. In addition, as future directions, this paper helps to investigate the possibility of combining the algorithms to utilize benefits and overcome their disadvantages.
Allah Almighty has aggrandized the position of orphans and elevated their status in the society and has given the graces for those who sponsor the orphan and care for and protecting them, even those who rub their heads. The divine care is manifested in the verses of the Holy Bible and the Holy Quran. Therefore, the whole world cared for the orphan, and called for the rights of the orphans in the conferences and the channels. But all that was little effort that does not meet what the orphan need and some were only ink on paper that were not applied. All that mentioned above is necessary in dealing with the study (the rights of orphans in the Old Testament and Islam, a Comparative Study). The study was divided into a Preface and four inquirie
... Show MoreThe problem of multi assembly line balancing appears as one of the most prominent and complex type of problem. The research problem of this dissertation is concerned with choosing the suitable method that includes the nature of the processes of the multi assembly type of the sewing line at factory no. (7). The State Company for Leather Manufacturing. The sewing line currently suffers from idle times at work stations which resulted in low production levels that do not meet the production plans. The authors have devised a flexible simulation model which uses the uniform distribution to generate task time for each shoe type produced by the factory. The simulation of the multi assembly line was based on assigni
... Show MoreDeveloping a new adaptive satellite images classification technique, based on a new way of merging between regression line of best fit and new empirical conditions methods. They are supervised methods to recognize different land cover types on Al habbinya region. These methods should be stand on physical ground that represents the reflection of land surface features. The first method has separated the arid lands and plants. Empirical thresholds of different TM combination bands; TM3, TM4, and TM5 were studied in the second method, to detect and separate water regions (shallow, bottomless, and very bottomless). The Optimum Index Factor (OIF) is computed for these combination bands, which realized
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
Land Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreObjective (s): To determine proportion of anemia among sample of Pregnant women. To identify factors
associated with the anemia (Maternal age, maternal education, gestational age, parity, gravidity, birth
interval, smoking, taking iron supplements and dietary habits).
Methodology: A cross-sectional study conducted at Al- washash & Bab-almoadham primary health care
centers. The sample was selected by (non-probability convenient sampling) and sample size was (550).
The study started from 1st March 2011 to 30th of March 2012. The data was collected by direct interview
using special questionnaire to obtained socio-demographic information.
Results: the result shows that mean age of the subjects was 26.5± 7.5 years, 8