This research aims to examine the relationship between hydrothermal alteration and mineralization (ore mineralogy) in the study area and geological structures in the deformation mechanism. The hydrothermal alteration was determined based on petrographic analysis, and ore mineralogy which was determined based on the ore microscopic analysis. The deformation mechanism is determined by paleo stress analysis using win-tensor, and the direction of principal stress on joints/veins and faults is calculated by the right-dihedron method. Hydrothermal alteration includes silicification, argillic, propylitic, and phyllic alterations; and ore mineralogy consists of stibnite, cinnabar, pyrite, chalcopyrite, sphalerite, covellite, hematite, and arsenopyrite at metamorphic rocks. The geological structure developed in the study area consists of shear fractures and Wumbubangka right Normal-slip Fault, which is accompanied by Wumbubangka right-slip lag fault and Wumbubangka reverse-slip fault formed in a simple shear mechanism. Crenulation, micro-folds, and porphyroblastic are also recognized in thin sections. The Wumbubangka right normal-slip fault, considered a syn-mineralization structure, formed the transpressional and transtensional geologic structures, forming the quartz vein parallel to and crosscutting the foliation. The correlation between surface geological structures and microstructures indicates that tectonic regimes have controlled the alteration and gold mineralization in the study area.
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More