The aim of this study is modeling the transport of industrial wastewater in sandy soil by using finite element method. A washing technique was used to remove the industrial wastewater from the soil. The washing technique applied with an efficient hydraulic gradient to help in transport of contaminant mass by advection. Also, the mass transport equation used in modeling the transport of industrial wastewater from soil includes the sorption and chemical reactions. The sandy soil samples obtained from Al-Najaf Governorate/Iraq. The wastewater contaminant was obtained from Al- Musyiebelectricity power plant. The soil samples were synthetically contaminated with four percentages of 10, 20, 30 and 40% of the contaminant and these percentages calculated from the distilled water used in the soaking process. The soaking process continued for 30 days. The contaminated soil samples were washed by using distilled water applied with a hydraulic gradient of 0.5. A laboratory physical model was designed to study the removal efficiency of contaminant from the soil after 10 days of remediation. The percentages of removal efficiency of the contaminant from the soil are (97.63, 96.79, 96.58, and 93.87) %. A computer program presented by Smith and Griffiths (P8.8) was developed bytaking into consideration both effects of adsorption and chemical reactions in solving mass transport equation. The results obtained from the developed computer program well agreed with those obtained experimentally in pattern and magnitudes. The effects of adsorption and chemical reactions are slight and have not effects on the quantity of contaminant mass transported by advection.
In this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show MoreIn this work, the fractional damped Burger's equation (FDBE) formula = 0,
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
The most important function of a prosthetic hand is their ability to perform tasks in a manner similar to a natural hand, so it is necessary to perform kinematic analysis to determine the performance and the ability of the prosthetic human finger design to work normally and smoothly when it's drive by two sets of links that embedded in its structure and pulled by a servomotor, so the Denvit-Hartenberg method was used to analyse the forward kinematics for the prosthetic finger joints to deduction the trajectory of the fingertip and the velocity of the joints was computed by using the Jacobian matrix. The prosthetic finger was modelled by the Solidwork - 2018 program and the results of kinematics were verified using MATLAB. The analys
... Show MoreAbstract That the child is aged 7 years, surrounded by information, knowledge and skillsvaried, which constitute the raw material of experience teaching and is in the rule of inputlearning, if received by the student of these data are positive, these data require research and audit, the style becomes more positive, effective, and then becomes the explorer, butnot done exploration efficiency without the visual, auditory and sensory owned by thechildren. So study aimed to identify the values of the optical track and explore mathematical and find the relationship between them. And use the descriptive approach in a manner the linkon the children of the first year of primary school age (6-7) years in my school Waziriya and Karkh, during the peri
... Show MoreBackground Cold atmospheric plasma (CAP) is widely used in the cancer therapy field. This type of plasma is very close to room temperature. This paper illustrates the effects of CAP on breast cancer tissues both in vivo and in vitro. Methods The mouse mammary adenocarcinoma cell line AN3 was used for the in vivo study, and the MCF7, AMJ13, AMN3, and HBL cell lines were used for the in vitro study. A floating electrode-dielectric barrier discharge (FE-DBD) system was used. The cold plasma produced by the device was tested against breast cancer cells. Results The induced cytotoxicity percentages were 61.7%, 68% and 58.07% for the MCF7, AMN3, and AMJ13 cell lines, respectively, whereas the normal breast tissue HBL cell line exhibited very li
... Show More