Preferred Language
Articles
/
uBY7jIcBVTCNdQwCX1WK
Signal Processing Techniques for Robust Spectrum Sensing
...Show More Authors

Cognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper , we present the system design approach to meet this challenge with technique , The design space is diverse as it involves various types of primary user signals, We analysis of signal processing approaches and identify the regimes where these techniques are applicable. The goal of this paper is to present a practical system design view of spectrum sensing functionality.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Feb 01 2019
Journal Name
Ieee Transactions On Emerging Topics In Computational Intelligence
Neuromorphic Architecture for the Hierarchical Temporal Memory
...Show More Authors

View Publication
Scopus (26)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Wed Jul 17 2019
Journal Name
Advances In Intelligent Systems And Computing
A New Arabic Dataset for Emotion Recognition
...Show More Authors

In this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N

... Show More
View Publication
Scopus (22)
Crossref (12)
Scopus Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Journal Of Construction Engineering And Management
Development of Assessment Tool for Workforce Sustainability
...Show More Authors

View Publication
Scopus (46)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of The College Of Languages (jcl)
Failure of Comedy in Waiting for Godot
...Show More Authors

Many critics suggest that Beckett’s early plays are comic because they focus their analyses on the use comic elements. Waiting for Godot is one of Beckett’s early plays, and it has been heavily analyzed and read as a comic text partly because its subtitle is “a tragicomedy in two acts” and also because of the comic techniques used in the play. The present paper, however, attempts to read the play as a piece in which comedy fails to produce any effects on the characters who remain apparently very desperate and frustrated throughout the play. The characters perform different comic acts, but they do not really feel amused or entertained. The paper suggests that the acts these characters put on stage are only means to pass t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Compared of estimating two methods for nonparametric function to cluster data for the white blood cells to leukemia patients
...Show More Authors

 

Abstract:                                        

   We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.

    In this research, I estimate the reliability function of cluster function by using the seemingly unrelate

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 01 2009
Journal Name
J. Of University Of Anbar For Pure Science
Estimation of the Normalized Difference Vegetation Index (NDVI) Variation for Selected Regions in Iraq for two Years 1990 & 2001
...Show More Authors

The Normalized Difference Vegetation Index (NDVI) is commonly used as a measure of land surface greenness based on the assumption that NDVI value is positively proportional to the amount of green vegetation in an image pixel area. The Normalized Difference Vegetation Index data set of Landsat based on the remote sensing information is used to estimate the area of plant cover in region west of Baghdad during 1990-2001. The results show that in the period of 1990 and 2001 the plant area in region of Baghdad increased from (44760.25) hectare to (75410.67) hectare. The vegetation area increased during the period 1990-2001, and decreases the exposed area.

View Publication
Publication Date
Mon May 01 2017
Journal Name
Journal Of Arab Studies In Education & Psychology (asep)
Procedural Knowledge for the, Mathematics Departments Students, College of Education for Pure Sciences / Ibn al-Haytham, University of Baghdad
...Show More Authors

Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Survival Function and Failure Rate for the Exponentiated Expanded Power Function Distribution
...Show More Authors

 

     We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed  (LSD)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
ESTIMATION OF COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES WITH APPLICATIONS
...Show More Authors

In this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme  value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS  & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia

... Show More
View Publication Preview PDF
Crossref