Cognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper , we present the system design approach to meet this challenge with technique , The design space is diverse as it involves various types of primary user signals, We analysis of signal processing approaches and identify the regimes where these techniques are applicable. The goal of this paper is to present a practical system design view of spectrum sensing functionality.
The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show MoreBACKGROUND: CRC is one of the most common cancers in the world. K-ras is proto-oncogene with GTPase activity that is lost when the gene is mutated. Analysis of K-ras mutational status is very important for CRC treatment, being the most important predictors of resistance to targeted therapy. OBJECTIVE: This study aims to determine the frequency and spectrum of K-ras mutation among Iraqi patients with sporadic CRC. PATIENTS, MATERIALS AND METHODS: This study enrolled 35 cases with sporadic CRC; their clinicopathological parameters were analyzed. The FFPE blocks were used for DNA extraction; PCR amplification of K-ras gene and hybridization of allele-specific oligoprobes were performed. The assay covers 29 mutations in the K-ras gene (codons 1
... Show MoreP. aeruginosa is one of the complex targets for antimicrobial chemotherapy. Also, it is intrinsically resistant to several antibiotics. It produces β-lactamases enzymes that are responsible for the widespread β-lactam antimicrobial resistance. There are three major groups of β-lactamase enzymes, MBLs and ESBLs forming Pseudomonas is a major issue for the treatment of burns victims. Methods: A total of 28 clinical isolates related to P. aeruginosa have been obtained from the burns specimens from patients attending to AL-Imam hospital/Baghdad-Iraq, through the period from October 2015 to March 2016. Also, all isolates have been recognized as P. aeruginosa via utilizing bacteriological assay and confirmed by Vitek 2. In addition, the suscep
... Show Morel
Big data of different types, such as texts and images, are rapidly generated from the internet and other applications. Dealing with this data using traditional methods is not practical since it is available in various sizes, types, and processing speed requirements. Therefore, data analytics has become an important tool because only meaningful information is analyzed and extracted, which makes it essential for big data applications to analyze and extract useful information. This paper presents several innovative methods that use data analytics techniques to improve the analysis process and data management. Furthermore, this paper discusses how the revolution of data analytics based on artificial intelligence algorithms might provide
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThe analysis of the classic principal components are sensitive to the outliers where they are calculated from the characteristic values and characteristic vectors of correlation matrix or variance Non-Robust, which yields an incorrect results in the case of these data contains the outliers values. In order to treat this problem, we resort to use the robust methods where there are many robust methods Will be touched to some of them.
The robust measurement estimators include the measurement of direct robust estimators for characteristic values by using characteristic vectors without relying on robust estimators for the variance and covariance matrices. Also the analysis of the princ
... Show MoreAs one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord
... Show More