Cognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper , we present the system design approach to meet this challenge with technique , The design space is diverse as it involves various types of primary user signals, We analysis of signal processing approaches and identify the regimes where these techniques are applicable. The goal of this paper is to present a practical system design view of spectrum sensing functionality.
Chaotic features of nuclear energy spectrum in 68Ge nucleus are investigated by nuclear shell model. The energies are calculated through doing shell model calculations employing the OXBASH computer code with effective interaction of F5PVH. The 68Ge nucleus is supposed to have an inert core of 56Ni with 12 nucleons (4 protons and 8 neutrons) move in the f5p-model space ( and ). The nuclear level density of considered classes of states is seen to have a Gaussian form, which is in accord with the prediction of other theoretical studies. The statistical fluctuations of the energy spectrum (the level spacing P(s) and the Dyson-Mehta (or statistics) are well described by the Gaussian orthogonal ens
... Show MoreAn environmentally begnin second derivative spectrometric approach was developed for the estimation of the dissociation constants pKa(s) of metformin, a common anti-diabetic drug. The ultraviolet spectra of the aqueous solution of metformin were measured at different acidities, then the second derivative of each spectrum was graphed. The overlaid second derivative graphs exhibited two isobestic points at 225.5 nm and 244 nm pointing out to the presence of two dissociation constants for metformin pKa1 and pKa2, respectively. The method was validated by evaluating the reproducibility of the acquired results by comparing the estimated values of the dissociation constants of two different strategies that show excellent matching. As we
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show More Aluminum alloys widely use in production of the automobile and the aerospace because
they have low density, attractive mechanical properties with respect to their weight, better
corrosion and wear resistance, low thermal coefficient of expansion comparison with traditional
metals and alloys. Recently, researchers have shifted from single material to composite materials
to reduce weight and cost, improve quality, and high performance in structural materials.
Friction stir processing (FSP) has been successfully researched for manufacturing of metal
matrix composites (MMCs) and functional graded materials (FGMs), find out new possibilities
to chemically change the surfaces. It is shown th
Semi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel
... Show MoreThin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV
... Show MoreThin films of bulk heterojunction blend Ni-Phthalocyanine
Tetrasulfonic acid tetrasodium salt and dpoly
(3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (NiPcTs:
PEDOT: PSS) with different (PEDOT:PSS) concentrations (0.5, 1, 2)
are prepared using spin coating technique with thickness 100 nm on
glass and Si substrate. The X-Ray diffraction pattern of NiPcTs
powder was studied and compared with NiPc powder, the pattern
showed that the structure is a polycrystalline with monoclinic phase.
XRD analysis of as-deposited (NiPcTs/PEDOT:PSS) thin films
blends in dicated that the film appeared at(100), (102) in
concentrations (0.5, 1) and (100) in concentration (2). The grain size
is increased with increasing
The applications of Multilevel Converter (MLC) are increased because of the huge demand for clean power; especially these types of converters are compatible with the renewable energy sources. In addition, these new types of converters have the capability of high voltage and high power operation. A Nine-level converter in three modes of implementation; Diode Clamped-MLC (DC-MLC), Capacitor Clamped-MLC (CC-MLC), and the Modular Structured-MLC (MS-MLC) are analyzed and simulated in this paper. Various types of Multicarrier Modulation Techniques (MMTs) (Level shifted (LS), and Phase shifted (PS)) are used for operating the proposed Nine level - MLCs. Matlab/Simulink environment is used for the simulation, extracting, and ana
... Show MoreDue to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.