The utilization of targeted therapy for programmed death ligand 1 (PD‑L1) has emerged as a prominent focus in contemporary clinical trials, particularly in the context of immune checkpoint inhibitors. The prognostic significance of the expression of PD‑L1 in invasive mammary cancer remains a subject of discussion in clinical oncology, requiring further exploration, despite its recognition as a biomarker for responsiveness to anti‑PDL1 immunotherapy. The present study was conducted to investigate the immunohistological expression of PD‑L1 in women with triple‑negative breast cancer (TNBC), with a particular focus for searching for the associated clinical and pathological characteristics. The present retrospective study examined the immunohistochemical expression of PD‑L1 in 40 formalin‑fixed paraffin‑embedded blocks provided by core needle biopsies from women with TNBC. Data analysis was performed by comparing PDL1 expression with histological grade, the presence or the absence of calcification, the presence or the absence of necrosis and axillary lymph node status at presentation. The positivity of PD‑L1 expression was found in 24 (60%) of the total number of samples. The mean number of PD‑L1 positive samples was 37.8333±21.857. There was a non‑statistically significant association between PD‑L1 positivity, histological grade and the presence of tissue necrosis. A statistically significant association was found between PD‑L1 positivity and the presence of calcification and positive axillary lymph node status at presentation. On the whole, the present study demonstrates that PD‑L1 expression is present at a relatively high prevalence rate in TNBC; thus, it is rational to examine PD‑L1 expression in women with TNBC.
In this paper, we have provided a very thorough analysis of a new novel chelate metal ion complex of [Cu(II),Ag(I)] prepared via the interaction with the ligand{ 2-amino-8-((4-chloro-3-hydroxyphenyl) diazenyl)azo]guanine} [LAAG], which is synthesized by diazo coupling of the 5-amino-2-chlorophenol with amino acid guanine. The ligand and its complexes are identified by a variety of techniques, like [HNMR, FTIR, and Uv-vis] spectral, thermal analysis (TGA), and element analyses (CHN). The molar ratio was achieved so that the Cu(II) complex has (1:2) (M:L) with octahedral geometry; however, the Ag(I) complex has (1:1) (M:L) with tetrahedral geometry, and the ligand acts as neutral N,N-bidentate; as well as the ligand (LAAG) and its complexe
... Show MoreThe New Schiff base ligand 4,4'-[(1,1'-Biphenyl)-4,4'-diyl,bis-(azo)-bis-[2-Salicylidene thiosemicarbazide](HL)(BASTSC)and its complexes with Co(II), Ni(II), and Cu(II) were prepared and characterized by elemental analysis, electronic, FTIR, magnetic susceptibility measurements. The analytical and spectral data showed, the stiochiometry of the complexes to be 1:1 (metal: ligand). FTIR spectral data showed that the ligand behaves as dibasic hexadentate molecule with (N, S, O) donor sequence towards metal ions. The octahedral geometry for Co(II), Ni(II), and Cu(II) complexes and non electrolyte behavior was suggested according to the analysis data.
The phenyl hydrazine was react readily with acetic acid chloride in [1:2] ratio in alkyl of ethanolic solution, and refluxe for five hours to produce a new ligand of (N-Carboxymethyl-N-phenyl-hydrazino)-acetic acid [H2L].
New complexes of the [M(Ura)(Phen)(OH2)Cl2]Cl.2H2O type, where (Ura) uracil ; (Phen) 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3) were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass) and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III) complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III) complexes is octahedral geometries .The biological activity was tested of metal(III) salts, liga
... Show MoreNew complexes of the [M(Ura)(Phen)(OH2)Cl2]Cl.2H2O type, where (Ura) uracil ; (Phen) 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3) were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass) and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III) complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III) complexes is octahedral geometries .The biological activity was tested of metal(III) salts, ligands
... Show Morehe development of multidrug resistance in Gram-negative bacteria is a major problem faced antimicrobial therapy and management of infectious diseases. Too many resistance mechanisms were developed since the antimicrobial agents were produced and actually used. The mechanisms involved in antimicrobial agents' resistance are, modifying enzymes, alteration of the target site of antimicrobials and prevention of antimicrobials accumulation inside the bacterial cells. The latest is accomplished by two mechanisms: alteration of outer membrane permeability and efflux pumps. Efflux pumps are either chromosomal or plasmid-encoded although chromosomal encoded efflux pumps are common in Gram-negative bacteria. Resistance nodulation division (RND) efflu
... Show More