The aim of this study is to utilize the electromembrane extraction (EME) system as a manner for effective removal of zinc from aqueous solutions. A novel and distinctive electrochemical cell design was adopted consisting of two glass chambers, a supported liquid membrane (SLM) housing a polypropylene flat membrane infused with 1-octanol and a carrier. Two electrodes were used, a graphite as anode and a stainless steel as cathode. A comprehensive examination of several influential factors including the choice of carrier, the applied voltage magnitude, the initial pH of the donor solution, and the initial concentration of zinc was performed, all in a concerted effort to ascertain their respective impacts on the efficiency of zinc elimination. Two distinct carriers, namely tris(2-ethylhexyl) phosphate (TEHP) and bis(2-ethylhexyl) phosphate (DEHP) were evaluated, in a tandem with utilization of 1-octanol. The results revealed essential role played by the applied voltage in augmenting the rate of mass transfer of zinc across the membrane. The best operating conditions were utilized for 1-octanol enriched with 1.0 vol.% bis(2-ethylhexyl) phosphate as a carrier, applied voltage of 60 V, initial pH of 5, initial zinc concentration of 15 mg L-1, extraction duration of 6 hours, and stirring rate of 1000 rpm. Surprisingly, operating under these meticulously devised conditions culminated in the outstanding removal efficiency of 87.3 %. In comparison with no applied voltage, a substantial enhancement in removal efficiency was observed, transcending from a meager 36.67 % to an impressive 87.3 % at 60 V, suggesting thus a tremendous potential of EME as an efficacious technique for the elimination of heavy metals.
This study presents a rapid, sensitive, and straightforward approach to measure chlorpheniramine maleate (CPM) by using turbidity CFIA. The method involves CPM reacting with sodium nitroprusside (Nitropress) to produce a pale white precipitate. The NAG-SSP-5S1D analyzer was used to measure turbidity at 0°–180° angle to detect the attenuation of incident light as a result of collision on the surfaces of the precipitate particles. The linear range of CPM measurements was between 0.008 and 11 m.mol/L, with correlation coefficient of 0.9983 and R2% = 99.65. The limit of detection was determined to be 0.0328 µg/sample from the lowest concentration in the calibration curve, and the repeatability of the method (RSD%) was less than 0.4% (n = 6
... Show MoreObjective: The aim of this study was to compare the marginal microleakage between bulk-fill, preheated bulk-fill, and bulk-fill flowable composite resins above and below cemento-enamel junction (CEJ) using micro-computed tomography. Methods: Sixty freshly extracted premolar teeth were prepared with a slot shaped cavities of a total of 120 Class II: 3mm (bucco-lingual), 2mm (mesio-distal) with mesial-gingival margin located 1mm coronal to CEJ, and distal gingival margin located 1mm apical to the CEJ. The samples were randomly divided into two main groups according to the restorative material (Tetric EvoCeram and 3M Filtek), and each group was further sub-divided into three subgroups according to the consistency (bulk fill, preheated bulk fil
... Show MoreIn this study new derivatives of Schiff bases 5-8, 1, 3-oxazepine 9-16 and tetrazoles 17-19 have been synthesized from the new starting material 1 which has synthesized the reaction of one mole of dichloro acetic acid and two moles of thiophenol, the esters 2-3 were synthesized from the reaction of compound 1 with methanol or ethanol respectively in the presence of H2SO4 as catalyst then 2, 2-dithiophenylaceto Hydrazide 4 were synthesized from the reaction of 2 or 3 with hydrazine hydrate 80%, Schiff bases 5-8 were synthesized from the reaction of 4 with appropriate aldehyde or ketone. Treatment of Schiff bases with maleic and phathalic anhydride in dry benzene to give 1, 3-oxazepen derivatives 9-16 and with sodium azide in tetrahydrofuran
... Show MoreEight new complexes with the general formula [M(L)2(H2O)2] were prepared resulting from the reaction of the new Schiff base ligand [(E)-5- ((2-hydroxybenzylidene)amino)-2-phenyl-2,4-dihydro-3H-pyrazol-3- one(L)] with metal ions [manganese, cadmium, zinc, copper, nickel, cobalt, Mercury Bivalent and tetravalent platinum. This ligand was derived from the reaction of the amine (5-amino-2-phenyl-2,4-dihydro3H-pyrazol-3-one) with Salicylaldehyde, which is linked to the metal ions via two atoms. The nitrogen is the isomethene group, and the oxygen is the hydroxide group of the pyrazoline ring. The prepared compounds were characterized using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and ultraviolet spectroscopy, and from the
... Show More