The aim of this study is to utilize the electromembrane extraction (EME) system as a manner for effective removal of zinc from aqueous solutions. A novel and distinctive electrochemical cell design was adopted consisting of two glass chambers, a supported liquid membrane (SLM) housing a polypropylene flat membrane infused with 1-octanol and a carrier. Two electrodes were used, a graphite as anode and a stainless steel as cathode. A comprehensive examination of several influential factors including the choice of carrier, the applied voltage magnitude, the initial pH of the donor solution, and the initial concentration of zinc was performed, all in a concerted effort to ascertain their respective impacts on the efficiency of zinc elimination. Two distinct carriers, namely tris(2-ethylhexyl) phosphate (TEHP) and bis(2-ethylhexyl) phosphate (DEHP) were evaluated, in a tandem with utilization of 1-octanol. The results revealed essential role played by the applied voltage in augmenting the rate of mass transfer of zinc across the membrane. The best operating conditions were utilized for 1-octanol enriched with 1.0 vol.% bis(2-ethylhexyl) phosphate as a carrier, applied voltage of 60 V, initial pH of 5, initial zinc concentration of 15 mg L-1, extraction duration of 6 hours, and stirring rate of 1000 rpm. Surprisingly, operating under these meticulously devised conditions culminated in the outstanding removal efficiency of 87.3 %. In comparison with no applied voltage, a substantial enhancement in removal efficiency was observed, transcending from a meager 36.67 % to an impressive 87.3 % at 60 V, suggesting thus a tremendous potential of EME as an efficacious technique for the elimination of heavy metals.
This paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ΔG, ΔH, and ΔS thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated.
Some maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.
In this study, low cost biosorbent ̶inactive biomass (IB) granules (dp=0.433mm) taken from drying beds of Al-Rustomia Wastewater Treatment Plant, Baghdad-Iraq were used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physico-chemical parameters such as initial metal ion concentration (50 to 200 mg/l), equilibrium time (0-180 min), pH (2-9), agitation speed (50-200 rpm), particles size (0.433 mm), and adsorbent dosage (0.05-1 g/100 ml) were studied. Six mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich–Peterson, Sips, Khan, and Toth models. The best fit to the P
... Show MoreThis paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreCurrent studies interested on the biosynthesis of zinc oxide nanoparticles (ZnO-NPs) using hot plants extracts of Allium sativum and characterization of them using: Atomic Force Microscopy (AFM), X-ray diffractions (XRD), Fourier Transform Infrared Spectroscopy (FT- IR), UV–visible spectral and Hot stage. The results found that all NPs are had nano-size. ZnO NPs was produced by four procedures using hot extract of Allium sativum. The average diameters were: 101.59 nm, 110.33 nm, 75.69 nm, 88.67 nm for first, second, third and fourth procedures respectively compared with 47.57 nm for standard NPs. The Roughness averages (Ra) were: 10.8 nm, 6.83 nm, 13.8 nm, 0.541 nm for first, second, third and fourth respectively. The Root mean square (Sq
... Show MoreIn this study an experimental work was done to study the possibility of using aluminum rubbish material as a coagulant to remove the colloidal particles from oily wastewater by dissolving this rubbish in sodium hydroxide solution. The experiments were carried out on simulated oily wastewater that was prepared at different oil concentrations and hardness levels (50, 250, 500, and 1000) ppm oil for (2000, 2500, 3000, and 3500) ppm CaCo3 respectively. The initial turbidity values were (203, 290, 770, and 1306) NTU, while the minimum values of turbidity that have been gained from the experiments in NTU units were (1.67, 1.95, 2.10, and 4.01) at best sodium aluminate dosages in milliliters (12, 20, 24, and 28) for
... Show MoreA new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were
... Show More