This contribution provides an atomistic understanding into the impact of W, Nb, and Mo co-substitution at Hf-site of cubic HfO2 lattice to produce Hf1−xTMxO2 system at x = 25%. The calculations have been performed under the framework of density functional theory supported by Habbured parameter (DFT+U). Structural analysis demonstrates that the recorded lattice constants is in good coherence with the previously published results. For the lattice parameters, contraction by 1.33% comparing with the host system has been reported. Furthermore, the doping effect of TM on the band gap leads to its reduction in the resulting Hf0.75TM0.25O2 configurations. The partial density of states (PDOS) indicate that hybridization through localized electronic energy states from TM-5 and 6 d orbitals and O-2 p orbital have participated in narrowing the band gap. Population analysis displays that Hf0.75TM0.25O2 compounds revealed ionic and covalent behavior for Hf-O and TM-O bonds, respectively. The optical investigation portrays that Hf0.75TM0.25O2 systems would absorb a broad range of ultra violet (UV) electromagnetic waves which hence consider them as suitable candidates in optoelectronic memristors industries. Optical analysis also revealed a rise in the optical conductivity and absorption in higher photon energy extent. These compounds are suitable for photovoltaic and other optoelectronic applications. The zero values of the optical conductivity for the simulated systems in a broad range of electromagnetic waves confirm the impossibility of the electronic charge transfer to be occurred through the systems and hence preventing the leakage current which is not preferred in optoelectronic devices such as metal oxide semiconductor field effect transistors (MOSFETs).
In this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show MoreThis study was carried out to evaluate the hepato-protective property of (Arachis hypogea L.) peanut skin extracts in CCl4 induced hepatotoxicity in mice. The antioxidant activity was measured utilizing 2, 2-diphenyl-1-1 picrylhydrazyl (DPPH) radical scavenging capacity. The results showed that the methanolic extract was the highest free radical scavenging activity than the aqueous extract with values (92.34 ± 0.45 and 87.62 ± 0.44) respectively in 12 mg/mL compared to 89.61 ± 0.34 for Butylated hydroxytoluene (BHT) and 93.25 ± 0.06 for vitamin C, which means that the methanolic extract of peanut skin is superior to BHT. Furthermore, the total phenolic content was analyzed by using Folin-Ciocalteu method, the amount of total phenol in a
... Show MoreAbstract:
Objective: The study aim is to assess knowledge of secondary schools female students regarding dysmenorrhea; find out the effectiveness of education program on secondary schools students and also to identify relationship between education program and certain variables.
Methodology: The quasi-experimental design (pretest and posttest) on one hundred students 4th year in Khawla Bint Al-Azwar secondary school for females at morning shift in Al Nasiriya City, data collection started at 4th March to 18th March 2018. A non-probability (purposive) sample of (100) students (50) student from scientific branch and (50) students from literary branch. Data have been collected through using a questionnaire modeled and made up of
Biotreatment using immobilized cells (IC) technology has proved to be the most promising and most economical approach for the removal of many toxic organic pollutants found in petroleum-refinery wastewater (PRW) such as phenol. This study was undertaken to evaluate the degradation of phenol by Pseudomonas cells individually immobilized in two different bio-carrier matrices including polyvinyl alcohol-guar gum (PVA-GG) and polyvinyl alcohol-agar agar (PVA-AA). Results of batch experiments revealed that complete removal of phenol was attained in the first cycle after 150 min using immobilized cells (IC) in both PVA-GG and PVA-AA. Additional cycles were confirmed to evaluate the validity of recycling beads of immob
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
This study was undertaken to diagnose routine settling problems within a third-party oil and gas companies’ Mono-Ethylene Glycol (MEG) regeneration system. Two primary issues were identified including; a) low particle size (<40 μm) resulting in poor settlement within high viscosity MEG solution and b) exposure to hydrocarbon condensate causing modification of particle surface properties through oil-wetting of the particle surface. Analysis of oil-wetted quartz and iron carbonate (FeCO₃) settlement behavior found a greater tendency to remain suspended in the solution and be removed in the rich MEG effluent stream or to strongly float and accumulate at the liquid-vapor interface in comparison to naturally water-wetted particles. As su
... Show MoreThis paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
The complete genome sequence of bacteriophage VPUSM 8 against O1 El Tor Inaba