Green synthesis of silver nanoparticles (AgNPs) using different plant parts has shown a great potential in medicinal and industrial applications. In this study, AgNPs were in vitro green synthesized using A. graecorum, and its antifungal and antitumoractivities were investigated. Scanning electron microscopy (SEM) image result indicated spherical shape of AgNPs with a size range of 22-36 nm indicated by using Image J program. The functional groups indicated by Fourier-transform infrared spectroscopy (FTIR) represented the groups involved in the reduction of silver ion into nanoparticles. Alhagi graecorum AgNPs inhibited MCF-7 breast cancer cell line growth in increased concentration depend manner, significant differences shown at 50, 100, and 150 μg/ml concentrations compared to the control. Strong antifungal activity against Candida species (C. albicans., C. glabrata, C. parapsilosis, C. tropicales, and C. krusei) was observed and the inhibition zone range from 14-22 mm at a concentration of 0.01 mmol/ml and from 17-27 mm at a concentration of 0.02 mmol/ml. Based on our findings, it is concluded that synthesized silver nanoparticles from A. graecorum can be used as a potential antitumor and antifungal agent for various therapeutical applications.
In this work gold nanoparticles (AuNPs), were prepared. Chemical method (Seed-Growth) was used to prepare it, then doping AuNPs with porous silicon (PS), used silicon wafer p-type to produce (PS) the processes doping achieved by electrochemical etching, the solution etching consist of HF, ethanol and AuNPs suspension, the result UV-visible absorption for AuNPs suspension showed the single peak located at ~(530 – 521) nm that related to SPR, the single peak is confirmed that the NPs present in the suspension is spherical shape and non-aggregated. X-ray diffraction analysis indicated growth AuNPs with PS. compare the PS layer without AuNPs and with AuNPs doped for electrical properties and sensitivity properties we found AuNPs:PS is more
... Show MoreNanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D
... Show MoreBackground. Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS),
... Show MoreNanoparticles are defined as an organic or non-organic structure of matter in at least one of its dimensions less than 100 nm. Nanoparticles proved their effectiveness in different fields because of their unique physicochemical properties. Using nanoparticles in the power field contributes to cleaning and decreasing environmental pollution, which means it is an environmentally friendly material. It could be used in many different parts of batteries, including an anode, cathode, and electrolyte. This study reviews different types of nanoparticles used in Lithium-ion batteries by collecting the advanced techniques for applying nanotechnology in batteries. In addition, this review presents an idea about the advantages and d
... Show MoreA pulsed (TEA-0O2) laser was used to dissociate molecules of silane ethylene (C2I-14) and ammonia (NH3) gases, through collision assisted multiple photon dissociation (MPD) to deposit(SiC i_xNx) thin films, where the X-values are 0, 0.13 and 0.33, on glass substrate at T,----648 K. deposition rate of (0.416-0.833) nm/pulse and thickness of (500-1000)nm .Fourier transform infrared spectrometry (FT-IR) was used to study the nature of the chemical bonds that exist in the films. Results revealed that these films contain complex networks of the atomic (Si, C, and N), other a quantity of atomic hydrogen and chemical bonds such as (Si-N, C-N, C-14 and N-H).Absorbance and Transmittance spectra in the wavelength range (400-1100) nm were used to stud
... Show MoreThis research aims to the possibility of evaluating the strategic performance of the State Board for Antiquities and Heritage (SBAH) using a balanced scorecard of four criteria (Financial, Customers, Internal Processes, and Learning and Growth). The main challenge was that the State Board use traditional evaluation in measuring employee performance, activities, and projects. Case study and field interviews methodology has been adopted in this research with a sample consisting of the Chairman of the State Board, 6 General Managers, and 7 Department Managers who are involved in evaluating the strategic performance and deciding the suitable answers on the checklists to analyze it according to the 7-points Likert scale. Data analysis re
... Show MoreBackground and Objectives: Wound healing is a complex process with overlapping phases haemostasis, inflammation, proliferation and maturation/matrix remodeling. Each phase of wound healing requires different management strategies, and inappropriate treatment can delay wound healing. The aim of the present study was to evaluate the efficacy of topical application of calmodulin as a significant augmentation of the granulation tissue production process of wound healing and to express of genes CaMKK2, MaP2K6 and CXCR4 at site of wound defect, that have versatile effects on the body and they belong to Ca/camodulin related genes. Material and Methods: In this study thirty albino male rats, weighting (300-400) gram, aged (6-8) months, wil
... Show More