Alpha-tocopherol acetate is one of the most important vitamin E derivatives,that were used as antioxidants. Adsorbents like kaolin, magnesium carbonate, and microcrystalline cellulose were used successfully to incorporate oily alpha-tocopherol acetate into an acceptable powder dosage form. The results revealed that microcrystalline cellulose as an adsorbents gave the best results with 50% loading capacity at time, 8 minutes before and after incubation period (3 months at 30C°), while kaolin and magnesium carbonate have been shown a significant difference before and after incubation. Addition of 1% w/w magnesium carbonate to the kaolin enhanced the loading capacity by decreasing the time of adsorption from 20 to 6 minutes and 47
... Show MorePKE Sharquie MD, PDPAA Noaimi MD, DDV, FDSM Al-Ogaily MD, IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 2015
The aim of the research is to shed light on the stages of developing the Iraqi virtual science Library(IVSL) project, and to define its distinctive role in providing all kinds of electronic resources to researchers from professors and graduate students, to identify its contents , the entry interfaces and applications of use, and provide them through electronic portals to publishing houses, research institutions and international universities, The research sample included the teaching staff and researchers participating in educational qualification courses at the Continuing Education Center at the University of Baghdad, The research population and its sample consisted of the category of (IVSL) users, and its sample (387) users. Analysis meth
... Show MoreLet R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreCerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show More