This research investigates the pre- and post-cracking resistance of steel fiber-reinforced concrete specimens with Glass Fiber Reinforced Polymer (GFRP) bars subjected to flexural loading. The purpose is to modify the ductility and cracking resistance of GFRP-reinforced beams, which are prone to early cracking and excessive deflections instigated by the low modulus of elasticity of GFRP. Six self-compacting concrete specimens (1500×240×200 mm), incorporating steel fibers of two lengths (25 mm and 40 mm) with varying distribution depths, were tested to assess their structural performance. The results indicate significant enhancements in cracking resistance, stiffness, energy absorption, ductility, and flexural strength. Tested beams reinforced with 40 mm-long steel fibers exhibited a 23.9%–24.2% development in the ultimate moment capacity associated with the steel-reinforced specimens, whereas those with 25 mm fibers showed smaller increases (2.7%–3.1%). The cracking resistance improved by up to 33.3% in beams with 40 mm-long fibers and by 16.67%–20% in those with 25 mm-long fibers, associated with a non-fibrous GFRP specimen. Additionally, the inclusion of 40 mm hooked-end steel fibers significantly enhanced ultimate deflection, with peak deflections increasing by 30.2%–44.8% compared to steel-reinforced beams. Fibrous GFRP-reinforced beams exhibited up to 154% higher energy absorption under ultimate load than a non-fibrous GFRP beam. All fibrous GFRP-reinforced beams achieved deformation-based ductility indices between 4.2 and 6.9, exceeding the minimum threshold of 4 for adequate deformability. These findings confirm that incorporating 40 mm steel fibers significantly improves the structural behavior of GFRP-reinforced concrete specimens, offering valuable insights for optimizing their design.
These days, the world is facing a global environmental and sustainability problem due to the increasing generation of large amounts of waste through construction and demolition work, which causes a serious problem for the environment. Therefore, this research was conducted to get rid of the waste disposal problems, including old glass and concrete, which were used as recycled fine aggregates. Seven different mixtures were prepared. The first mixture was with the used sand, which is glass sand, and it was adopted as a reference mixture (ORPC), and three mixtures were prepared for each of the recycled materials (waste concrete and glass) and partially replaced by glass sand in different proportions (25, 50, and 75) %. Some
... Show MoreConcrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as
Since its invention by the Ancient Romans and later developed during the mid-18th century, the concrete structure and finish, has been considered as the most powerful, practical, economic and constructional material that meets the building’s architectural and aesthetical requirements. By creating unique architectural forms, the pioneer architects used concrete widely to shape up their innovative designs and buildings.
The pre-mixed ultra-high performance concrete which manufactured by Lafarge.
The transparent concrete and cement that allow the light beams to pass through them, introduces remarkable well-lit architectural spaces within the same structural criteria. This product is a recyclable, sustainab
... Show MoreA new benzylidene derivative, namely N-benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine (BPTA), has been synthesized and instrumentally confirmed with Elemental Analysis (CHN), Nuclear Magnetic Resonance (NMR), and Fourier Transform Infrared Spectroscopy (FT-IR). Titanium Dioxide (TiO2) nanoparticles (NPs) were synthesized and characterized by X-ray. The mutualistic complementary dependence of BPTA with TiO2 nanoparticles as anti-corrosive inhibitor on mild steel (MS) in 1.0 M hydrochloric acid has been tested at various concentrations and various temperatures. The methodological work was achieved by gravimetric measurement methods complemented with surface analysis. The synthesized inhibitor concentrations were 0.1 mM to 0.5 mM and the temper
... Show MoreKE Sharquie, HR Al-Hamami, IK Sharquie, AA Noaimi, HM Al-Karawy, Iraqi Postgraduate Medical Journal, 2013
Background: War represents a major human crisis; it destroys communities and results in ingrained consequences for public health and well-being
Objective: We set this study to shed light on the public health status in Iraq after the successive wars, sanctions, sectarian conflicts, and terrorism, in light of certain health indicators.
Design: The primary source of data for this analysis comes from the Iraqi Ministry of Health, and The World Health Organization disease surveillance.
Results: Most of the morbidity indicators are high, even those that are relatively declining recently, are still higher than those repor
... Show More