Image compression is one of the data compression types applied to digital images in order to reduce their high cost for storage and/or transmission. Image compression algorithms may take the benefit of visual sensitivity and statistical properties of image data to deliver superior results in comparison with generic data compression schemes, which are used for other digital data. In the first approach, the input image is divided into blocks, each of which is 16 x 16, 32 x 32, or 64 x 64 pixels. The blocks are converted first into a string; then, encoded by using a lossless and dictionary-based algorithm known as arithmetic coding. The more occurrence of the pixels values is codded in few bits compare with pixel values of less occurrence through the sub intervals between the range 0 and 1. Finally, the stream of compressed tables is reassembled for decompressing (image restoration). The results showed a compression gain of 10-12% and less time consumption when applying this type of coding to each block rather than the entire image. To improve the compression ratio, the second approach was used based on the YCbCr colour model. In this regard, images were decomposed into four sub-bands (low-low, high-low, low-high, and high-high) by using the discrete wavelet transform compression algorithm. Then, the low-low sub-band was transmuted to frequency components (low and high) via discrete wavelet transform. Next, these components were quantized by using scalar quantization and then scanning in a zigzag way. The compression ratio result is 15.1 to 27.5 for magnetic resonance imaging with a different peak signal to noise ratio and mean square error; 25 to 43 for X-ray images; 32 to 46 for computed tomography scan images; and 19 to 36 for magnetic resonance imaging brain images. The second approach showed an improved compression scheme compared to the first approach considering compression ratio, peak signal to noise ratio, and mean square error.
In this work a study and calculation of the normal approach between two bodies,
spherical and rough flat surface, had been conducted by the aid of image processing
technique. Four kinds of metals of different work hardening index had been used as a
surface specimens and by capturing images of resolution of 0.006565 mm/pixel a good estimate of the normal approach may be obtained the compression tests had been done in strength of material laboratory in mechanical engineering department, a Monsanto tensometer had been used to conduct the indentation tests. A light section measuring equipment microscope BK 70x50 was used to calculate the surface parameters of the texture profile like standard deviation of asperity peak heights
In this work a study and calculation of the normal approach between two bodies, spherical and rough flat surface, had been conducted by the aid of image processing technique. Four kinds of metals of different work hardening index had been used as a surface specimens and by capturing images of resolution of 0.006565 mm/pixel a good estimate of the normal approach may be obtained the compression tests had been done in strength of material laboratory in mechanical engineering department, a Monsanto tensometer had been used to conduct the indentation tests.
A light section measuring equipment microscope BK 70x50 was used to calculate the surface parameters of the texture profile like standard deviation of asperity peak heights, centre lin
In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
High peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128×128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with
... Show MoreA simulation study of using 2D tomography to reconstruction a 3D object is presented. The 2D Radon transform is used to create a 2D projection for each slice of the 3D object at different heights. The 2D back-projection and the Fourier slice theorem methods are used to reconstruction each 2D projection slice of the 3D object. The results showed the ability of the Fourier slice theorem method to reconstruct the general shape of the body with its internal structure, unlike the 2D Radon method, which was able to reconstruct the general shape of the body only because of the blurring artefact, Beside that the Fourier slice theorem could not remove all blurring artefact, therefore, this research, suggested the threshold technique to eliminate the
... Show Moren this study, data or X-ray images Fixable Image Transport System (FITS) of objects were analyzed, where energy was collected from the body by several sensors; each sensor receives energy within a specific range, and when energy was collected from all sensors, the image was formed carrying information about that body. The images can be transferred and stored easily. The images were analyzed using the DS9 program to obtain a spectrum for each object,an energy corresponding to the photons collected per second. This study analyzed images for two types of objects (globular and open clusters). The results showed that the five open star clusters contain roughly t
... Show More