Preferred Language
Articles
/
thdWOI8BVTCNdQwCG2M8
The Arithmetic Coding and Hybrid Discrete Wavelet and Cosine Transform Approaches in Image Compression
...Show More Authors

Image compression is one of the data compression types applied to digital images in order to reduce their high cost for storage and/or transmission. Image compression algorithms may take the benefit of visual sensitivity and statistical properties of image data to deliver superior results in comparison with generic data compression schemes, which are used for other digital data. In the first approach, the input image is divided into blocks, each of which is 16 x 16, 32 x 32, or 64 x 64 pixels. The blocks are converted first into a string; then, encoded by using a lossless and dictionary-based algorithm known as arithmetic coding. The more occurrence of the pixels values is codded in few bits compare with pixel values of less occurrence through the sub intervals between the range 0 and 1. Finally, the stream of compressed tables is reassembled for decompressing (image restoration). The results showed a compression gain of 10-12% and less time consumption when applying this type of coding to each block rather than the entire image. To improve the compression ratio, the second approach was used based on the YCbCr colour model. In this regard, images were decomposed into four sub-bands (low-low, high-low, low-high, and high-high) by using the discrete wavelet transform compression algorithm. Then, the low-low sub-band was transmuted to frequency components (low and high) via discrete wavelet transform. Next, these components were quantized by using scalar quantization and then scanning in a zigzag way. The compression ratio result is 15.1 to 27.5 for magnetic resonance imaging with a different peak signal to noise ratio and mean square error; 25 to 43 for X-ray images; 32 to 46 for computed tomography scan images; and 19 to 36 for magnetic resonance imaging brain images. The second approach showed an improved compression scheme compared to the first approach considering compression ratio, peak signal to noise ratio, and mean square error.

Crossref
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Improved Image Security in Internet of Thing (IOT) Using Multiple Key AES
...Show More Authors

Image is an important digital information that used in many internet of things (IoT) applications such as transport, healthcare, agriculture, military, vehicles and wildlife. etc. Also, any image has very important characteristic such as large size, strong correlation and huge redundancy, therefore, encrypting it by using single key Advanced Encryption Standard (AES) through IoT communication technologies makes it vulnerable to many threats, thus, the pixels that have the same values will be encrypted to another pixels that have same values when they use the same key. The contribution of this work is to increase the security of transferred image. This paper proposed multiple key AES algorithm (MECCAES) to improve the security of the tran

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Intelligent Engineering And Systems
Automatic Computer Aided Diagnostic for COVID-19 Based on Chest X-Ray Image and Particle Swarm Intelligence
...Show More Authors

View Publication
Scopus (23)
Crossref (5)
Scopus Crossref
Publication Date
Wed Dec 20 2023
Journal Name
Migration Letters
Women's Image in Arabic Songs (An Analytical Study of how Women Appear in the Most Viewed Songs on YouTube for the Year 2021)
...Show More Authors

Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Optics And Applications
Modeling and Analysis of a Miniaturized Ring Modulator Using Silicon-Polymer-Metal Hybrid Plasmonic Phase Shifter. Part I: Theoretical Framework
...Show More Authors

This paper presents comprehensive analysis and investigation for 1550nm and 1310nm ring optical modulators employing an electro-optic polymer infiltrated silicon-plasmonic hybrid phase shifter. The paper falls into two parts which introduce a theoretical modeling framework and performance assessment of these advanced modulators, respectively. In this part, analytical expressions are derived to characterize the coupling effect in the hybrid phase shifter, transmission function of the modulator, and modulator performance parameters. The results can be used as a guideline to design compact and wideband optical modulators using plasmonic technology

View Publication
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Optics And Applications
Modeling and Analysis of a Miniaturized Ring Modulator Using Silicon-Polymer-Metal Hybrid Plasmonic Phase Shifter. Part II: Performance Predictions
...Show More Authors

The ring modulator described in part I of this paper is designed here for two operating wavelengths 1550nm and 1310nm. For each wavelength, three structures are designed corresponding to three values of polymer slot widths (40, 50 and 60nm). The performance of these modulators are simulated using COMSOL software (version 4.3b) and the results are discussed and compared with theoretical predictions. The performance of intensity modulation/direct detection short range and long rang optical communication systems incorporating the designed modulators is simulated for 40 and 100Gb/s data rates using Optisystem software (version 12). The results reveal that an average energy per bit as low as 0.05fJ can be obtained when the 1550nm modulator is d

... Show More
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Fabrication and characterization of zinc oxide nanorods coated by graphene oxide ZnO-NR@GO as a potential hybrid material photocatalyst
...Show More Authors

Hybrid architecture of ZnO nanorods/graphene oxide ZnO-NRs@GO synthesized by electrostatic self-assembly methods. The morphological, optical and luminescence characteristics of ZnO-NRs@GO and ZnO-NRs thin films have been described by FESEM, TEM, HRTEM, and AFM, which refers to graphene oxide have been coated ZnO-NRs with five layers. Here we synthesis ZnO-NRs@GO by simple, cheap and environmentally friendly method, which made it favorable for huge -scale preparation in many applications such as photocatalyst. ZnO-NRs@GO was applied as a photocatalyst Rodamin 6 G (R6G) dye from water using 532 nm diode laser-induced photocatalytic process. Overall degradation of R6G/ ZnO-NRs@GO was achieved after 90 minutes of laser irradiation while it ne

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon May 01 2017
Journal Name
Journal Of Nuclear Medicine
Capability of a novel small field of view hybrid gamma camera (HGC) for sentinel lymph node and small organ imaging
...Show More Authors

Objectives: Small field of view gamma detection and imaging technologies for monitoring in vivo tracer uptake are rapidly expanding and being introduced for bed-side imaging and image guided surgical procedures. The Hybrid Gamma Camera (HGC) has been developed to enhance the localization of targeted radiopharmaceuticals during surgical procedures; for example in sentinel lymph node (SLN) biopsies and for bed-side imaging in procedures such as lacrimal drainage imaging and thyroid scanning. In this study, a prototype anthropomorphic head and neck phantom has been designed, constructed, and evaluated using representative modelled medical scenarios to study the capability of the HGC to detect SLNs and image small organs. Methods: An anthropom

... Show More
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison some of methods wavelet estimation for non parametric regression function with missing response variable at random
...Show More Authors

Abstract

 The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .

The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref