Preferred Language
Articles
/
thdWOI8BVTCNdQwCG2M8
The Arithmetic Coding and Hybrid Discrete Wavelet and Cosine Transform Approaches in Image Compression
...Show More Authors

Image compression is one of the data compression types applied to digital images in order to reduce their high cost for storage and/or transmission. Image compression algorithms may take the benefit of visual sensitivity and statistical properties of image data to deliver superior results in comparison with generic data compression schemes, which are used for other digital data. In the first approach, the input image is divided into blocks, each of which is 16 x 16, 32 x 32, or 64 x 64 pixels. The blocks are converted first into a string; then, encoded by using a lossless and dictionary-based algorithm known as arithmetic coding. The more occurrence of the pixels values is codded in few bits compare with pixel values of less occurrence through the sub intervals between the range 0 and 1. Finally, the stream of compressed tables is reassembled for decompressing (image restoration). The results showed a compression gain of 10-12% and less time consumption when applying this type of coding to each block rather than the entire image. To improve the compression ratio, the second approach was used based on the YCbCr colour model. In this regard, images were decomposed into four sub-bands (low-low, high-low, low-high, and high-high) by using the discrete wavelet transform compression algorithm. Then, the low-low sub-band was transmuted to frequency components (low and high) via discrete wavelet transform. Next, these components were quantized by using scalar quantization and then scanning in a zigzag way. The compression ratio result is 15.1 to 27.5 for magnetic resonance imaging with a different peak signal to noise ratio and mean square error; 25 to 43 for X-ray images; 32 to 46 for computed tomography scan images; and 19 to 36 for magnetic resonance imaging brain images. The second approach showed an improved compression scheme compared to the first approach considering compression ratio, peak signal to noise ratio, and mean square error.

Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Periodontal & Implant Science
Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia
...Show More Authors

Purpose This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 o

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Preparation and Study Some of Properties of Unsaturated Polyester/Soda Lime Glass-Sawdust Hybrid Composite
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Mathematics For Applications
DIRICHLET PROCESS ANALYSIS USING BIORTHOGONAL WAVELET: A STATISTICAL STUDY OF FINANCIAL MARKET
...Show More Authors

The Dirichlet process is an important fundamental object in nonparametric Bayesian modelling, applied to a wide range of problems in machine learning, statistics, and bioinformatics, among other fields. This flexible stochastic process models rich data structures with unknown or evolving number of clusters. It is a valuable tool for encoding the true complexity of real-world data in computer models. Our results show that the Dirichlet process improves, both in distribution density and in signal-to-noise ratio, with larger sample size; achieves slow decay rate to its base distribution; has improved convergence and stability; and thrives with a Gaussian base distribution, which is much better than the Gamma distribution. The performance depen

... Show More
View Publication
Scopus
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Modified Hybrid Nanoparticles on the Properties of Base Oil
...Show More Authors

 

Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Computer Model Application for Sorting and Grading Citrus Aurantium Using Image Processing and Artificial Neural Network
...Show More Authors
Abstract<p>This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 31 2018
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
ELEMENTS OF MARKETING MIX AND THEIR ROLE IN CONSUMER PERCEPTION OF BRAND IMAGE: A SURVEY OF SAMPLE OPINIONS FROM CONSUMERS OF ENIEM BRAND IN THE ALGERIAN MARKET.: ELEMENTS OF MARKETING MIX AND THEIR ROLE IN CONSUMER PERCEPTION OF BRAND IMAGE: A SURVEY OF SAMPLE OPINIONS FROM CONSUMERS OF ENIEM BRAND IN THE ALGERIAN MARKET.
...Show More Authors

The current research aimed to analyze the importance, correlation and the effect of independent variables represented by marketing variables on the dependent variable represented by local brand, through taking ENIEM as a model for this study, which represents a sensitive sector for the Algerian consumer. The results of the study evinced that the Algerian consumer has a positive image toward the brand ENIEM given marketing variables which has acquired considerable importance to this consumer. Also, the results of this study showed a statistically significant correlation between marketing variables and good perception toward the brand ENIEM, at the same time, the existence of a statistically significant effect for each of these variables o

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc

... Show More
Scopus (10)
Scopus
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Hybrid Cipher System using Neural Network
...Show More Authors

The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a

... Show More
View Publication
Scopus (10)
Scopus Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
A Mathematical Approach for Computing the Linear Equivalence of a Periodic Key-Stream Sequence Using Fourier Transform
...Show More Authors

A mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc

... Show More
View Publication Preview PDF
Crossref