Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermore, various uses in the real world, Data distributions in intrusion detection systems, for example, are non-stationary, which produce concept drift over time or non-stationary learning. The word "concept drift" is used to describe the process of changing one's mind about something in an online-supervised learning scenario, the connection between the input data and the target variable changes over time. We define adaptive learning, classify existing concept drift strategies, evaluate the most typical, distinct, and widely used approaches and algorithms, describe adaptive algorithm assessment methodology, and show a collection of examples, all of this is based on the assumption that you have a basic understanding of supervised learning. The survey examines the various aspects of concept drift in a comprehensive manner in order to think about the current fragmented "state-of-the-art". As a result, which intends to give scholars, industry analysts, and practitioners a comprehensive introduction to idea drift adaptability.
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .