The Asymmetrical Castellated concavely – curved soffit Steel Beams with RPC and Lacing Reinforcement improves compactness and local buckling (web and flange local buckling), vertical shear strength at gross section (web crippling and web yielding at the fillet), and net section ( net vertical shear strength proportioned between the top and bottom tees relative to their areas (Yielding)), horizontal shear strength in web post (Yielding), web post-buckling strength, overall beam flexure strength, tee Vierendeel bending moment and lateral-torsional buckling, as a result of steel section encasement. This study presents two concentrated loads test results for seven specimens Asymmetrical Castellated concavely – curved soffit Steel Beams section encasement by Reactive powder concrete (RPC) with laced reinforcement. The encasement of the Asymmetrical Castellated concavely – curved soffit Steel Beams consists of, flanges unstiffened element height was filled with RPC for each side, and laced reinforced which are used inclined continuous reinforcement of two layers on each side of the Asymmetrical Castellated concavely – curved soffit Steel Beams web. The inclination angle of lacing reinforcement concerning the longitudinal axis is 45. Seven specimens with seven different configurations will be prepared and tested under two concentrated loads at the mid-third of the beam span. The tested specimen's properties are: unconfined Asymmetrical Castellated Steel Beams (Reference1), second model; Asymmetrical Castellated concavely – curved soffit Steel Beams (web and flange) confined with (RPC) only, third model; Asymmetrical Castellated concavely – curved soffit Steel Beams (web and flange) confined with (RPC) and laced reinforcement, fourth model; is same as the third model but it has one web opening with increase the depth of web post by 10 %, 20%, and 30 % as a gap between top and bottom parts of Asymmetrical Castellated concavely – curved soffit Steel Beams respectively. The results that have been obtained from the experimental part and the numerical analysis results by ABAQUS demonstrated that the increase of the gap leads to an increase in the load against the deflection curve. Sample CB8 with 122 mm gap has gained the highest load against deflection when compared with either reference sample without gap and other samples with 65 mm and 105 mm gap for concavely–curved soffit Steel Beams.
<p>The popularity, great influence and huge importance made wireless indoor localization has a unique touch, as well its wide successful on positioning and tracking systems for both human and assists also contributing to take the lead from outdoor systems in the scope of the recent research works. In this work, we will attempt to provide a survey of the existing indoor positioning solutions and attempt to classify different its techniques and systems. Five typical location predication approaches (triangulation, fingerprinting, proximity, vision analysis and trilateration) are considered here in order to analysis and provide the reader a review of the recent advances in wireless indoor localization techniques and systems to hav
... Show MoreThis paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ul
... Show MoreSix proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.
... Show MoreThe finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when
... Show MoreBackground: Esthetic correction represents one of the clinical conditions that required the use of laminate veneers in premolars region. Aim of the study: The purpose of this study was to evaluate the fracture strength of the laminate veneers in maxillary first premolars, fabricated from either composite (direct and indirect techniques) or ceramic CAD/CAM blocks. Materials and Methods: Fifty sound human maxillary premolar teeth were used in this in vitro study. Teeth were divided randomly into one control group and four experimental groups of ten teeth each; Group A: Restored with direct composite veneer (Filtek Z250 XT), Group B: Restored with indirect composite veneers (Filtek Z250 XT), Group C: Restored with lithium disilicate ceramic CA
... Show MoreComposite steel-concrete sections have a broad benefit through increasing structural strength as well as minimizing the self-loads. All past researches were concerned with pre-installed shear connectors (PRSC) in the manufacturing of composite sections. A new fabrication technique for steel-concrete-steel composite sections were presented in the current study by the post-installation shear connectors (POSC) passed-through an embedded polymerizing vinyl chloride (PVC) pipes. The performance of normal strength concrete prisms with a specified strength of 32 MPa connected to square steel tubes (SST) was investigated. Six specimens were fabricated in both methodologies, PRSC and POSC were experimentally tested by Push-out test. The spac
... Show MoreThe aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility an
... Show MoreWhen the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that
... Show MoreWires are commonly used for the construction of orthodontic appliances and occasionally as wrought clasps and rests on partial dentures. The corrosion resistance is the most important properties of dental alloy. Corrosion process reported to cause a numerous adverse effects on both living tissue and restoration .The conditions in the mouth are very suitable for the occurrence of corrosion. The main objective of this study was to evaluate the corrosion behavior of different gauges of stainless steel wire in artificial saliva .Four gauges of dental stainless steel wire used in orthodontic and removable partial denture were used in this study 0.6mm.,0.7mm.,0 .8mm.&1.0mm.
... Show More