The Asymmetrical Castellated concavely – curved soffit Steel Beams with RPC and Lacing Reinforcement improves compactness and local buckling (web and flange local buckling), vertical shear strength at gross section (web crippling and web yielding at the fillet), and net section ( net vertical shear strength proportioned between the top and bottom tees relative to their areas (Yielding)), horizontal shear strength in web post (Yielding), web post-buckling strength, overall beam flexure strength, tee Vierendeel bending moment and lateral-torsional buckling, as a result of steel section encasement. This study presents two concentrated loads test results for seven specimens Asymmetrical Castellated concavely – curved soffit Steel Beams section encasement by Reactive powder concrete (RPC) with laced reinforcement. The encasement of the Asymmetrical Castellated concavely – curved soffit Steel Beams consists of, flanges unstiffened element height was filled with RPC for each side, and laced reinforced which are used inclined continuous reinforcement of two layers on each side of the Asymmetrical Castellated concavely – curved soffit Steel Beams web. The inclination angle of lacing reinforcement concerning the longitudinal axis is 45. Seven specimens with seven different configurations will be prepared and tested under two concentrated loads at the mid-third of the beam span. The tested specimen's properties are: unconfined Asymmetrical Castellated Steel Beams (Reference1), second model; Asymmetrical Castellated concavely – curved soffit Steel Beams (web and flange) confined with (RPC) only, third model; Asymmetrical Castellated concavely – curved soffit Steel Beams (web and flange) confined with (RPC) and laced reinforcement, fourth model; is same as the third model but it has one web opening with increase the depth of web post by 10 %, 20%, and 30 % as a gap between top and bottom parts of Asymmetrical Castellated concavely – curved soffit Steel Beams respectively. The results that have been obtained from the experimental part and the numerical analysis results by ABAQUS demonstrated that the increase of the gap leads to an increase in the load against the deflection curve. Sample CB8 with 122 mm gap has gained the highest load against deflection when compared with either reference sample without gap and other samples with 65 mm and 105 mm gap for concavely–curved soffit Steel Beams.
The finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when
... Show MoreThe aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility an
... Show MoreWhen the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that
... Show MoreBackground: Ceramic veneers represent the treatment of choice in minimally invasive esthetic dentistry; one of the critical factors in their long term success is marginal adaptation. The aim of the present study is to evaluate the marginal gap of ceramic veneers by using two different fabrication techniques and two different designs of preparation. Material and methods: A typodont maxillary central incisor used in the preparation from which metal dies were fabricated, which were in turn used to make forty stone dies. The dies divided into four experimental groups, each group had ten samples: A1: prepared with butt-joint incisal reduction and restored with IPS e.max CAD, A2: prepared with overlapped incisal reduction and restored with IPS e.
... Show MoreBackground: The marginal adaptation has a key role in the success and longevity of the fixed dental restoration, which is affected by the impression and the fabrication techniques .The objective of this in vitro study was to evaluate and compare the marginal fitness of lithium disilicate crowns using two different digital impression techniques (direct and indirect techniques) and two different fabrication techniques (CAD/CAM and Press techniques). Materials and Methods: Thirty two sound upper first premolar teeth of comparable size extracted for orthodontic reason were selected in this study .Standardized preparation of all teeth samples were carried out with modified dental surveyor to receive all ceramic crown restoration with 1 mm deep
... Show MoreWires are commonly used for the construction of orthodontic appliances and occasionally as wrought clasps and rests on partial dentures. The corrosion resistance is the most important properties of dental alloy. Corrosion process reported to cause a numerous adverse effects on both living tissue and restoration .The conditions in the mouth are very suitable for the occurrence of corrosion. The main objective of this study was to evaluate the corrosion behavior of different gauges of stainless steel wire in artificial saliva .Four gauges of dental stainless steel wire used in orthodontic and removable partial denture were used in this study 0.6mm.,0.7mm.,0 .8mm.&1.0mm.
... Show MoreComposite steel-concrete sections have a broad benefit through increasing structural strength as well as minimizing the self-loads. All past researches were concerned with pre-installed shear connectors (PRSC) in the manufacturing of composite sections. A new fabrication technique for steel-concrete-steel composite sections were presented in the current study by the post-installation shear connectors (POSC) passed-through an embedded polymerizing vinyl chloride (PVC) pipes. The performance of normal strength concrete prisms with a specified strength of 32 MPa connected to square steel tubes (SST) was investigated. Six specimens were fabricated in both methodologies, PRSC and POSC were experimentally tested by Push-out test. The spac
... Show MoreFiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and