Abstract: The development of highly sensitive sensors has become an efficient field of research. In this work, an ArF Excimer laser of 193 nm with a maximum pulse energy of 275 mJ, 15 ns pulse duration and a repetition rate of 1 Hz is utilized to form a Laser Induced Periodic Surface Structures (LIPSS) of three different morphologies (nanochains, contours, grooves) on surface of CR39 polymer at a fluence range above the ablation threshold (250 mJ/cm2). The laser ablated polymer surface is then Surface Enhanced Raman Scattering (SERS) activated by deposition of a gold layer of 30 nm thickness. The capability of the produced substrate for surface enhanced Raman scattering is evaluated through thiophenol as an analyte molecule. It is observ
... Show MoreSingle mode-no core-single mode fiber structure with a section of tuned no-core fiber diameter to sense changes in relative humidity has been experimentally demonstrated. The sensor performance with tuned NCF diameter was investigated to maximize the evanescent fields. Different tuned diameters of of (100, 80, and 60)μm were obtained by chemical etching process based on hydrofluoric acid immersion. The highest wavelength sensitivity was obtained 184.57 pm/RH% in the RH range of 30% –100% when the no-core fiber diameter diameter was 60 μm and the sensor response was in real-time measurements
This study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as
... Show MoreData compression offers an attractive approach to reducing communication costs using available bandwidth effectively. It makes sense to pursue research on developing algorithms that can most effectively use available network. It is also important to consider the security aspect of the data being transmitted is vulnerable to attacks. The basic aim of this work is to develop a module for combining the operation of compression and encryption on the same set of data to perform these two operations simultaneously. This is achieved through embedding encryption into compression algorithms since both cryptographic ciphers and entropy coders bear certain resemblance in the sense of secrecy. First in the secure compression module, the given text is p
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreIn this research want to make analysis for some indicators and it's classifications that related with the teaching process and the scientific level for graduate studies in the university by using analysis of variance for ranked data for repeated measurements instead of the ordinary analysis of variance . We reach many conclusions for the
important classifications for each indicator that has affected on the teaching process. &nb
... Show MoreIntrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope
... Show MoreThis paper deals to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th
... Show More