Iraq is located near the northern tip of the Arabian plate, which is advancing northwards relative to the Eurasian plate, and is predictably, a tectonically active country. Seismic activity in Iraq increased significantly during the last decade. So structural and geotechnical engineers have been giving increasing attention to the design of buildings for earthquake resistance. Dynamic properties play a vital role in the design of structures subjected to seismic load. The main objective of this study is to prepare a data base for the dynamic properties of different soils in seismic active zones in Iraq using the results of cross hole and down hole tests. From the data base collected it has been observed that the average ve
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreEchinococcosis is a zoonotic disease caused by the larval stage of the tapeworm Echinococcus granulosus. This disease is an important public health and a significant economic issue in Iraq, where the lungs and livers are the popular places of infection. The aim of the current study focused on using the molecular techniques in the detection of an E. granulosus strain that causes cystic echinococcosis to human, sheep and cattle in Thi-Qar province, Iraq. In the current study, thirty isolates of E. granulosus were collected from 10 human hydatid cysts through surgery done at Al-Hussein Imam Teaching Hospital in Thi-Qar province and 10 sheep with 10 cattle hydatid cysts were obtained from the slaughterhouse in Thi-
... Show MoreThe drought is a globally phenomenon, its influence will convert large parts of Middle East and North Africa (MENA) region into hot dry deserts under the expectations of the climate change scenarios. Climate limitations, soil erosion affected by weather properties such as unequally and limited rainfall; temperature changing and wind, unsuitable irrigation techniques, excessive grazing, agricultural expansion against to the natural habitats, extensively clearance of natural vegetation, and soil salinity had all contributed to land degradation, reduced water supplies, and limited agricultural production in Iraq. It is estimated that nearly 54.3 % of Iraq's area is threatened by desertification problems.
In this research, for Iraq the Cl
The paired sample t-test is a type of classical test statistics that is used to test the difference between two means in paired data, but it is not robust against the violation of the normality assumption. In this paper, some alternative robust tests are suggested by combining the Jackknife resampling with each of the Wilcoxon signed-rank test for small sample size and Wilcoxon signed-rank test for large sample size, using normal approximation. The Monte Carlo simulation experiments were employed to study the performance of the test statistics of each of these tests depending on the type one error rates and the power rates of the test statistics. All these tests were applied on different sa
... Show MoreIn this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
In this paper, we estimate the survival function for the patients of lung cancer using different nonparametric estimation methods depending on sample from complete real data which describe the duration of survivor for patients who suffer from the lung cancer based on diagnosis of disease or the enter of patients in a hospital for period of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the survival function for the lung cancer by using shrinkage method is the best
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Rumors are typically described as remarks whose true value is unknown. A rumor on social media has the potential to spread erroneous information to a large group of individuals. Those false facts will influence decision-making in a variety of societies. In online social media, where enormous amounts of information are simply distributed over a large network of sources with unverified authority, detecting rumors is critical. This research proposes that rumor detection be done using Natural Language Processing (NLP) tools as well as six distinct Machine Learning (ML) methods (Nave Bayes (NB), random forest (RF), K-nearest neighbor (KNN), Logistic Regression (LR), Stochastic Gradient Descent (SGD) and Decision Tree (
... Show More