ole in all sta Oil well logging, also known as wireline logging, is a method of collecting data from the well environment to determine subterranean physical properties and reservoir parameters. Measurements are collected against depth along the well's length, and many types of wire cabling tools depend on the physical property of interest. Well probes generally has a dynamic respon to changes in rock layers and fluid composition. These probes or well logs are legal documents that record the history of a well during the drilling stages until its completion. Well probes record the physical properties of the well, which must then be interpreted in petrographic terms to obtain the characteristics of the rocks and fluids associated with the well. Many bases on which well probes are depend on obtaining information, and preventing the rocks from responding to stimuli sent by special devices, whether those stimuli are electrical, radioactive, or acoustic. In addition, there are electrically controlled mechanical bases used to measure the diameter of the well, its flow, pressure, perforation, and taking samples. Wireline refers to the technique of using the cable to deliver special equipment to the bottom of the well to repair, evaluation, or equipment recovery. A simple wireline consists of a shiny metal wire (called a slickline) that is very durable for tensile and wear operations. It is of (0.108" or 0.125") diameter. The equipment is installed at the end of the wire. Still, sometimes a braided cable is used from many small steel wires (Braided line), which makes it stronger and heavier than the first type. The information obtained from the logs is considered to assess geological areas based on porosity, permeability, hydrocarbon fluids, and shale ratio. Well logging uses logs that are much cheaper than core operations and also cheaper than the information obtained from drilling mud. This review aims to pinpoint on the most important logging processes used in oil wells, as well logs have an effective role in all stages of the oil industry.
Knowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the format
... Show MorePolluted water has been considered a critical issue nowadays, threatening the environment and lives of living creatures. Because of technological and industrial advancements, as well as increased social activities of humans in various countries, pollution sources have multiplied. To reduce the impact of this problem, many techniques have been developed in order to reach zero discharge pollution. In the last decade, graphene oxide (GO) - a member of the graphene nanomaterials family, has been the focus of many research efforts in the water treatment sector because of its extraordinary properties. This review highlights the research efforts conducted to investigate GO as a novel adsorbent for water treatment applications and recen
... Show MoreIn any natural area or water body, evapotranspiration is one of the important outcomes in the water balance equation. As a significant method and depending on monthly average temperature, estimating of potential Evapotranspiration depending on Thornthwaite method was adopted in this research review. Estimate and discuss evapotranspiration by using Thornthwaite method is the main objectives of this research review with considerable details as well as compute potential evapotranspiration based on climatologically data obtained in Iraq. Temperature - evapotranspiration relationship can be estimated between those two parameters to reduce cost and time and facilitate calculation of water balance in lakes, river, and h
... Show MoreHealth and safety problem can be described by statistics it can only be understood by knowing and feeling the pain, suffering, and depression. Health and safety has a legal responsibility to protect it for everyone who can affect in the workplace. This includes manufacturers, suppliers, designers and controllers of work places and employees. Work injury is one of the major problems in manufacturing and production systems industries; it is reduced production efficiency and affects the cost. To gain flexibility from a traditional manufacturing system and production efficiency, this paper is about the application of estimating technology to preview and synthesis of Lost Time of Work Injuries in industry systems aims to provide a safe workin
... Show MoreThe Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, a
... Show MoreThe Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and
... Show MoreIn this paper investigate the influences of dissolved CO2/H2S gases, crude oil velocity and temperature on the rate of corrosion of crude oil transmission pipelines of Maysan oil fields southern Iraq. The Potentiostatic corrosion test technique was conducted into two types of carbon steel pipeline (materials API 5L X60 and API 5L X80). The computer software ECE electronic corrosion engineer was used to predict the influences of CO2 partial pressure, the composition of crude oil, flow velocity of crude oil and percentage of material elements of carbon steel on the rate of corrosion. As a result, the carbon steel API 5L X80 indicates good and appropriate resistance to corrosion compared to carbon steel API
... Show MoreEstimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar
... Show More