ole in all sta Oil well logging, also known as wireline logging, is a method of collecting data from the well environment to determine subterranean physical properties and reservoir parameters. Measurements are collected against depth along the well's length, and many types of wire cabling tools depend on the physical property of interest. Well probes generally has a dynamic respon to changes in rock layers and fluid composition. These probes or well logs are legal documents that record the history of a well during the drilling stages until its completion. Well probes record the physical properties of the well, which must then be interpreted in petrographic terms to obtain the characteristics of the rocks and fluids associated with the well. Many bases on which well probes are depend on obtaining information, and preventing the rocks from responding to stimuli sent by special devices, whether those stimuli are electrical, radioactive, or acoustic. In addition, there are electrically controlled mechanical bases used to measure the diameter of the well, its flow, pressure, perforation, and taking samples. Wireline refers to the technique of using the cable to deliver special equipment to the bottom of the well to repair, evaluation, or equipment recovery. A simple wireline consists of a shiny metal wire (called a slickline) that is very durable for tensile and wear operations. It is of (0.108" or 0.125") diameter. The equipment is installed at the end of the wire. Still, sometimes a braided cable is used from many small steel wires (Braided line), which makes it stronger and heavier than the first type. The information obtained from the logs is considered to assess geological areas based on porosity, permeability, hydrocarbon fluids, and shale ratio. Well logging uses logs that are much cheaper than core operations and also cheaper than the information obtained from drilling mud. This review aims to pinpoint on the most important logging processes used in oil wells, as well logs have an effective role in all stages of the oil industry.
BN RASHİD, 2023
Experimental investigation of the influence of inserting the metal foam to the solar chimney to induce natural ventilation are described and analyzed in this work. To carry out the experimental test, two identical solar chimneys (without insertion of metal foam and with insertion of metal foam) are designed and placed facing south with dimensions of length× width× air gap (2 m× 1 m× 0.2 m). Four incline angles are tested (20o,30o,45o,60o) for each chimney in Baghdad climate condition (33.3o latitude, 44.4o longitude) on October, November, December 2018. The solar chimney performance is investigated by experimentally recording absorber pl
... Show MoreIn this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.
In this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreHigh smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th
... Show MoreA 3D velocity model was created by using stacking velocity of 9 seismic lines and average velocity of 6 wells drilled in Iraq. The model was achieved by creating a time model to 25 surfaces with an interval time between each two successive surfaces of about 100 msec. The summation time of all surfaces reached about 2400 msec, that was adopted according to West Kifl-1 well, which penetrated to a depth of 6000 m, representing the deepest well in the study area. The seismic lines and well data were converted to build a 3D cube time model and the velocity was spread on the model. The seismic inversion modeling of the elastic properties of the horizon and well data was applied to achieve a corrected veloci
... Show MoreThis paper aims to deal with the understanding of the properties of the molecular gas hydrogen in the extragalactic spirals sample. It is critical to make observations of CO (J = 1-0) line emission for spiral galaxies, particularly those with an energetic nucleus. In the sample of spiral galaxies compiled, a carbon monoxide CO (1-0) emission line can be observed. This sample of galaxies' gas kinematics and star-forming should be analyzed statistically utilizing appropriate atomic gas HI, molecular gas H2, infrared (1μm-1000μm), visual (at λblue-optical=4400A0), and radio spectrum (at νradio=1.4 GHz and 5GHz) databases. STATISTICA is software that allows us to perform this statistical
... Show MorePultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular co
... Show More