Malware represents one of the dangerous threats to computer security. Dynamic analysis has difficulties in detecting unknown malware. This paper developed an integrated multi – layer detection approach to provide more accuracy in detecting malware. User interface integrated with Virus Total was designed as a first layer which represented a warning system for malware infection, Malware data base within malware samples as a second layer, Cuckoo as a third layer, Bull guard as a fourth layer and IDA pro as a fifth layer. The results showed that the use of fifth layers was better than the use of a single detector without merging. For example, the efficiency of the proposed approach is 100% compared with 18% and 63% of Virus Total and Bel
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show MorePseudomonas aeruginosa is the most common opportunistic pathogen causing morbidity and mortality in hospitalized patients due to its multiple resistance mechanisms. Therefore, as a therapeutic option becomes restricted, the search for a new agent is a preference. So P. aeruginosa is an extremely versatile Gram-negative bacterium capable of thriving in a broad spectrum of environments, and this performs main problems to workers in the field of health. One hundred and fifty samples were collected from different sources from Baghdad hospitals, divided into two main groups: clinical (100) specimens and (50) samples as an environmental, collected from October 2019 to the March 2020. All of these samples were cultured by specific and differential
... Show MoreThe study included the investigation of fungi ringed and inventory and Aflatoxins in rice and recorded average temperatures and humidity 22.75 degree Celsius and 13.2% respectively were obtained 1356 isolation innate possible diagnosis 15 species inherent in rice imported back to 8 races represented races b Fusarium , Cladosporium, Aspergillus and Alternaria
Opportunistic fungal infections due to the immune- compromised status of renal transplant patients are related to high rates of morbidity and mortality regardless of their minor incidence. Delayed in identification of invasive fungal infections (IFIs), will lead to delayed treatment and results in high mortality in those populations. The study aimed to assess the frequency of invasive fungal infection in kidney transplant recipients by conventional and molecular methods. This study included 100 kidney transplant recipients (KTR) (75 males, and 25 females), collected from the Centre of Kidney Diseases and Transplantation in the Medical City of Baghdad. Blood samples were collected during the period from June 2018 to April 2019. Twent
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show More