A nanocrystalline thin films of PbS with different thickness (400, 600)nm have been prepared successfully by chemical bath deposition technique on glass and Si substrates. The structure and morphology of these films were studied by X-ray diffraction and atomic force microscope. It shows that the structure is polycrystalline and the average crystallite size has been measured. The electrical properties of these films have been studied, it was observed that D.C conductivity at room temperature increases with the increase of thickness, From Hall measurements the conductivity for all samples of PbS films is p-type. Carrier's concentration, mobility and drift velocity increases with increasing of thickness. Also p-PbS/n-Si heterojunction has been fabricated at different thickness. The reverse bias capacitance was measured as a function of bias voltage, and it is indicated that these HJs are abrupt. The capacitance decreases with increasing the reverse bias, and fixed at high value of reverse bias voltage. The capacitance increases with increasing thickness. The width of depletion layers decreases with increases thickness. The value of highest built in potential has been measured. The current-voltage characteristic show that the forward current at dark condition varies exponentially with applied voltage and the junction was coinciding with recombination-tunneling model. The difference between forward and reverse current with applied voltage indicates that the junction has a high rectification characteristic. The value of ideality factor was varies between (1.821-1.715), From the I-V measurements under illumination, the photocurrent increased with increasing thickness. © 2016, National Institute R and D of Materials Physics. All rights reserved.
In this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show MoreIntroduction: The study was intended for Roseomonas gilardii NTCC 13290 strain pigment extraction and characterization. Methodology: The pigment-producing bacterial were cultured on Columbia blood agar and nutrient media agar. Then the pigments were extracted by ethanol. The candidate pigment was further characterized by different biotechnological techniques: UV-Vis spectroscopy, FT-IR to analyze the functional group of the targeted pigment, and TLC media. Results: The cultivation of Roseomonas gilardii on media showed pink color and nearly runny texture. The bacterial colonies were microscopically gram stained and examined, the R. gilardii was seen as coccobacillus colonies that mostly form pairs arranged as short chains. The R. gilardii b
... Show MoreIn this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
When the digital technologies entered the world of cinema production, they boosted the ability of the cinematographic medium to implement various subjects with great accuracy, as the development included all the joints and stages of the cinematic film production whether it is a feature film or an animation. Therefore, the process of film manufacturing by the digital technologies reflects the spirit of the age and the development that humanity has attained. What motivated the researcher to determine the topic of the research, which combines between the sound effects and the animated films under the title (aesthetics of employing digital sound effects in animated films), is the work of the digital technologies. The researcher divide
... Show More