Objectives. The current study aimed to predict the combined mesiodistal crown widths of maxillary and mandibular canines and premolars from the combined mesiodistal crown widths of maxillary and mandibular incisors and first molars. Materials and Methods. This retrospective study utilized 120 dental models from Iraqi Arab young adult subjects with normal dental relationships. The mesiodistal crown widths of all teeth (except the second molars) were measured at the level of contact points using digital electronic calipers. The relation between the sum mesiodistal crown widths of the maxillary and mandibular incisors and first molars and the combined mesiodistal crown widths of the maxillary and mandibular canines and premolars was assessed using Pearson’s correlation coefficient test. Based on this relation, regression equations were developed to predict the sum widths of maxillary and mandibular canines and premolars; then, the predicted mesiodistal crown sum widths were compared with the actual one using a paired sample t-test. Results. Statistically, the predicted mesiodistal crown sum widths were nonsignificantly different from the actual ones. Conclusions. The combined mesiodistal widths of maxillary and mandibular canines and premolars can be predicted successfully from the combined mesiodistal widths of the maxillary and mandibular incisors and first molars with a high degree of accuracy reaching to more than 86%.
In this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show MoreIn this paper, we study the growth of solutions of the second order linear complex differential equations insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .
In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
Often times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie
... Show MoreThis study relates to the estimation of a simultaneous equations system for the Tobit model where the dependent variables ( ) are limited, and this will affect the method to choose the good estimator. So, we will use new estimations methods different from the classical methods, which if used in such a case, will produce biased and inconsistent estimators which is (Nelson-Olson) method and Two- Stage limited dependent variables(2SLDV) method to get of estimators that hold characteristics the good estimator .
That is , parameters will be estim
... Show MoreThe research took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS
... Show MoreThe estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To
... Show More