Objectives. The current study aimed to predict the combined mesiodistal crown widths of maxillary and mandibular canines and premolars from the combined mesiodistal crown widths of maxillary and mandibular incisors and first molars. Materials and Methods. This retrospective study utilized 120 dental models from Iraqi Arab young adult subjects with normal dental relationships. The mesiodistal crown widths of all teeth (except the second molars) were measured at the level of contact points using digital electronic calipers. The relation between the sum mesiodistal crown widths of the maxillary and mandibular incisors and first molars and the combined mesiodistal crown widths of the maxillary and mandibular canines and premolars was assessed using Pearson’s correlation coefficient test. Based on this relation, regression equations were developed to predict the sum widths of maxillary and mandibular canines and premolars; then, the predicted mesiodistal crown sum widths were compared with the actual one using a paired sample t-test. Results. Statistically, the predicted mesiodistal crown sum widths were nonsignificantly different from the actual ones. Conclusions. The combined mesiodistal widths of maxillary and mandibular canines and premolars can be predicted successfully from the combined mesiodistal widths of the maxillary and mandibular incisors and first molars with a high degree of accuracy reaching to more than 86%.
Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin
... Show MoreIn the past years, the Algerian Economy has witnessed various monetary developments characterized by different monetary and banking reforms aimed by monetary authorities to achieve monetary stability and driving overall growth. It should be noted that there is evidence to initiate fundamental changes on the basis of which new monetary, financing and banking policy mechanisms must be formulated in Algeria by enhancing the pursuit of reforming the monetary system, in order to improve monetary and economic indicators.
The study a
... Show MoreIn this research, the covariance estimates were used to estimate the population mean in the stratified random sampling and combined regression estimates. were compared by employing the robust variance-covariance matrices estimates with combined regression estimates by employing the traditional variance-covariance matrices estimates when estimating the regression parameter, through the two efficiency criteria (RE) and mean squared error (MSE). We found that robust estimates significantly improved the quality of combined regression estimates by reducing the effect of outliers using robust covariance and covariance matrices estimates (MCD, MVE) when estimating the regression parameter. In addition, the results of the simulation study proved
... Show MoreAbstract The wavelet shrink estimator is an attractive technique when estimating the nonparametric regression functions, but it is very sensitive in the case of a correlation in errors. In this research, a polynomial model of low degree was used for the purpose of addressing the boundary problem in the wavelet reduction in addition to using flexible threshold values in the case of Correlation in errors as it deals with those transactions at each level separately, unlike the comprehensive threshold values that deal with all levels simultaneously, as (Visushrink) methods, (False Discovery Rate) method, (Improvement Thresholding) and (Sureshrink method), as the study was conducted on real monthly data represented in the rates of theft crimes f
... Show MoreThis study aims to employ modern spatial simulation models to predict the future growth of Al-Najaf city for the year 2036 by studying the change in land use for the time period (1986-2016) because of its importance in shaping future policy for the planning process and decision-making process and ensuring a sustainable urban future, using Geographical information software programs and remote sensing (GIS, IDRISI Selva) as they are appropriate tools for exploring spatial temporal changes from the local level to the global scale. The application of the Markov chain model, which is a popular model that calculates the probability of future change based on the past, and the Cellular Automa
Background : Gastroesophageal reflux disease (GERD) is one of chronic gastrointestinal diseases in which patient may be asymptomatic or was complained from heartburn and regurgitation or pulmonary symptoms. Aim of the study : Examine the serum level of sHLA-G in GERD patients and can be used as a biomarker for early detection of GERD disease. Materials and methods : The design of the study was a case- control prospective enrolled forty patients consulted Gastroenterology Unit- Al-Kindy Teaching Hospital, were diagnosed as GERD by their physician, and compared to second forty control healthy group form January-2023 to May-2024. Serum used for quantitative assessment of soluble HLA-G (sHLA-G) using a sandwich enzyme-linked immunosorbent a
... Show MoreWellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MoreA particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)
Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.