The alternating direction implicit method (ADI) is a common classical numerical method that was first introduced to solve the heat equation in two or more spatial dimensions and can also be used to solve parabolic and elliptic partial differential equations as well. In this paper, We introduce an improvement to the alternating direction implicit (ADI) method to get an equivalent scheme to Crank-Nicolson differences scheme in two dimensions with the main feature of ADI method. The new scheme can be solved by similar ADI algorithm with some modifications. A numerical example was provided to support the theoretical results in the research.
The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreIn the last few decades, growing interest has been shown in the development of new solar selective coatings based on transition metal nitride and/or oxinitride for solar absorbing applications. Solar thermal collectors are well thought out to be the most effective process of converting and harvesting solar radiation. In this investigation, Cu/TiON/CrO2 multilayered solar selective absorber coatings have been coated onto Al substrates using the dip-coating process followed by an annealing process at (400, 450, 500, 550, and 600 °C. The XRD analysis showed excellent crystalline quality for the prepared thin films along with enhanced surface features as proved by FESEM images, and the grains are in the range of (27–81) nm. The optical in
... Show More<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con
... Show MoreThe study aimed to identify the relationship between the speed and direction of the ball's rotation in the accuracy of the front and rear side longitudinal blow in wheelchair tennis players. The descriptive approach wasused in the manner of correlations to suit the nature of the problem to be studied. The research community identified the 32 players aged18 and over, and the search sample was selected from players with a local classification registered with the 2020 Wheelchair Ground Tennis Federation (2020) in the intentional manner of 8 players, using Smart Tennis Sensor technology to measure the speed and direction of the ball and test the accuracy of the front and rear side longitudinalstraightstrike. She conducted the reconnaissance exp
... Show MoreIn this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show MoreThe effects of T-shaped fins on the improvement of phase change materials (PCM) melting are numerically investigated in vertical triple-tube storage containment. The PCM is held in the middle pipe of a triple-pipe heat exchanger while the heat transfer fluid flows through the internal and external pipes. The dimension effects of the T-shaped fins on the melting process of the PCM are investigated to determine the optimum case. Results indicate that while using T-shaped fins improves the melting performance of the PCM, the improvement potential is mainly governed by the fin’s body rather than the head. Hence, the proposed T-shaped fin did not noticeably improve melting at the bottom of the PCM domain; additionally, a flat fin is ad
... Show MoreWell log rock physics and seismic facies analysis was carried out with a view to enhancing reservoir sand characterization of Mafe Field of Niger Delta. Lithofacies were identified using suites of well logs and correlated across the block. Rock properties were estimated from wireline logs using empirical methods. Vp-porosity crossplot was used to characterize the delineated sandstone reservoirs by comparing observed clusters and trends with various rock physics models. Seismic attribute analysis was employed to detect lateral changes in lithology across the field. Reservoir A is a relatively clean sand, with low average volume of shale of 0.4, average thickness of 55m, good average porosity of 0.
... Show MoreIn this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be qua
... Show More