In recent years, the performance of Spatial Data Infrastructures for governments and companies is a task that has gained ample attention. Different categories of geospatial data such as digital maps, coordinates, web maps, aerial and satellite images, etc., are required to realize the geospatial data components of Spatial Data Infrastructures. In general, there are two distinct types of geospatial data sources exist over the Internet: formal and informal data sources. Despite the growth of informal geospatial data sources, the integration between different free sources is not being achieved effectively. The adoption of this task can be considered the main advantage of this research. This article addresses the research question of how the integration of free geospatial data can be beneficial within domains such as Spatial Data Infrastructures. This was carried out by suggesting a common methodology that uses road networks information such as lengths, centeroids, start and end points, number of nodes and directions to integrate free and open source geospatial datasets. The methodology has been proposed for a particular case study: the use of geospatial data from OpenStreetMap and Google Earth datasets as examples of free data sources. The results revealed possible matching between the roads of OpenStreetMap and Google Earth datasets to serve the development of Spatial Data Infrastructures.
In the current paradigms of information technology, cloud computing is the most essential kind of computer service. It satisfies the need for high-volume customers, flexible computing capabilities for a range of applications like as database archiving and business analytics, and the requirement for extra computer resources to provide a financial value for cloud providers. The purpose of this investigation is to assess the viability of doing data audits remotely inside a cloud computing setting. There includes discussion of the theory behind cloud computing and distributed storage systems, as well as the method of remote data auditing. In this research, it is mentioned to safeguard the data that is outsourced and stored in cloud serv
... Show MoreThis research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreGetting knowledge from raw data has delivered beneficial information in several domains. The prevalent utilizing of social media produced extraordinary quantities of social information. Simply, social media delivers an available podium for employers for sharing information. Data Mining has ability to present applicable designs that can be useful for employers, commercial, and customers. Data of social media are strident, massive, formless, and dynamic in the natural case, so modern encounters grow. Investigation methods of data mining utilized via social networks is the purpose of the study, accepting investigation plans on the basis of criteria, and by selecting a number of papers to serve as the foundation for this arti
... Show MoreVisual analytics becomes an important approach for discovering patterns in big data. As visualization struggles from high dimensionality of data, issues like concept hierarchy on each dimension add more difficulty and make visualization a prohibitive task. Data cube offers multi-perspective aggregated views of large data sets and has important applications in business and many other areas. It has high dimensionality, concept hierarchy, vast number of cells, and comes with special exploration operations such as roll-up, drill-down, slicing and dicing. All these issues make data cubes very difficult to visually explore. Most existing approaches visualize a data cube in 2D space and require preprocessing steps. In this paper, we propose a visu
... Show MoreIn our research, several different Statics solutions have been implemented in the processing of seismic data in the south of Iraq for (2D) line seismic survey (AK18) of Abu-khama project with length 32.4 Km and their corresponding results have been compared in order to find optimum static solutions. The static solutions based on the tomographic-principle or combining the low frequency components of field statics with high frequency ones of refraction statics can provide a reasonable static solution for seismic data in the south of Iraq. The quality of data was bad and unclear in the seismic signal, but after applying field statics there is an enhancement of data quality. The Residual static correction improved the qualities of seis
... Show MoreIn this work, a modern optical system based on modulation technique is constructed to achieve the retrieval of optical defects and distortions of the images behind dark barriers. A 800x600 analog spatial light modulator (SLM) is used in this technique with a 632.8nm He-Ne laser, a circular metallic mesh (CMM) is imaged and disturbed and then dealing with our system. The SLM was confirmed for irregularity improvement such as variable diffracted optical element (DOE) control. The obtained results showed that the effect of distortion has been treated and reduced to be minimum by controlling phase and amplitude modulation of the scattered wave front utilizing the SLM. The obtained images showed identical to the original image wi
... Show MoreAbstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show MoreIt is so much noticeable that initialization of architectural parameters has a great impact on whole learnability stream so that knowing mathematical properties of dataset results in providing neural network architecture a better expressivity and capacity. In this paper, five random samples of the Volve field dataset were taken. Then a training set was specified and the persistent homology of the dataset was calculated to show impact of data complexity on selection of multilayer perceptron regressor (MLPR) architecture. By using the proposed method that provides a well-rounded strategy to compute data complexity. Our method is a compound algorithm composed of the t-SNE method, alpha-complexity algorithm, and a persistence barcod
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o