Blockchain technology relies on cryptographic techniques that provide various advantages, such as trustworthiness, collaboration, organization, identification, integrity, and transparency. Meanwhile, data analytics refers to the process of utilizing techniques to analyze big data and comprehend the relationships between data points to draw meaningful conclusions. The field of data analytics in Blockchain is relatively new, and few studies have been conducted to examine the challenges involved in Blockchain data analytics. This article presents a systematic analysis of how data analytics affects Blockchain performance, with the aim of investigating the current state of Blockchain-based data analytics techniques in research fields and exploring how specific features of this new technology may transform traditional business methods. The primary objectives of this study are to summarize the significant Blockchain techniques used thus far, identify current challenges and barriers in this field, determine the limitations of each paper that could be used for future development, and assess the extent to which Blockchain and data analytics have been effectively used to evaluate performance objectively. Moreover, we aim to identify potential future research paths and suggest new criteria in this burgeoning discipline through our review. Index Terms— Blockchain, Distributed Database, Distributed Consensus, Data Analytics, Public Ledger.
n this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func
... Show MoreThe region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled
... Show MoreHydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined.
There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements.
The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more a
This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreWith the development of communication technologies for mobile devices and electronic communications, and went to the world of e-government, e-commerce and e-banking. It became necessary to control these activities from exposure to intrusion or misuse and to provide protection to them, so it's important to design powerful and efficient systems-do-this-purpose. It this paper it has been used several varieties of algorithm selection passive immune algorithm selection passive with real values, algorithm selection with passive detectors with a radius fixed, algorithm selection with passive detectors, variable- sized intrusion detection network type misuse where the algorithm generates a set of detectors to distinguish the self-samples. Practica
... Show MoreHydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined. There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements. The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more accurate t
... Show MoreThis study aims to estimate the accuracy of digital elevation models (DEM) which are created with exploitation of open source Google Earth data and comparing with the widely available DEM datasets, Shuttle Radar Topography Mission (SRTM), version 3, and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. The GPS technique is used in this study to produce digital elevation raster with a high level of accuracy, as reference raster, compared to the DEM datasets. Baghdad University, Al Jadriya campus, is selected as a study area. Besides, 151 reference points were created within the study area to evaluate the results based on the values of RMS.Furthermore, th
... Show MoreIn this paper, the theoretical cross section in pre-equilibrium nuclear reaction has been studied for the reaction at energy 22.4 MeV. Ericson’s formula of partial level density PLD and their corrections (William’s correction and spin correction) have been substituted in the theoretical cross section and compared with the experimental data for nucleus. It has been found that the theoretical cross section with one-component PLD from Ericson’s formula when doesn’t agree with the experimental value and when . There is little agreement only at the high value of energy range with the experimental cross section. The theoretical cross section that depends on the one-component William's formula and on-component corrected to spi
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreReactive oxygen species (ROS) are produced as a result of biochemical processes that are not in balance with the body's antioxidant defense mechanism. This metabolic dysfunction is referred to the oxidative stress (OS). Metabolic dysfunction-associated diseases are affected by changes in the redox balance. It is now widely recognized that oxidative stress significantly affects diabetes mellitus (DM), particularly type 2 diabetes. The biochemical changes associated with DM could disturb the oxidative milieu, leading to several microvascular complications in diabetic patients. Thus, DM is a perfect disease to explore the harmful consequences of oxidative stress and how to treat it. Oxidative stress triggered by hyperglycemia is
... Show More