Blockchain technology relies on cryptographic techniques that provide various advantages, such as trustworthiness, collaboration, organization, identification, integrity, and transparency. Meanwhile, data analytics refers to the process of utilizing techniques to analyze big data and comprehend the relationships between data points to draw meaningful conclusions. The field of data analytics in Blockchain is relatively new, and few studies have been conducted to examine the challenges involved in Blockchain data analytics. This article presents a systematic analysis of how data analytics affects Blockchain performance, with the aim of investigating the current state of Blockchain-based data analytics techniques in research fields and exploring how specific features of this new technology may transform traditional business methods. The primary objectives of this study are to summarize the significant Blockchain techniques used thus far, identify current challenges and barriers in this field, determine the limitations of each paper that could be used for future development, and assess the extent to which Blockchain and data analytics have been effectively used to evaluate performance objectively. Moreover, we aim to identify potential future research paths and suggest new criteria in this burgeoning discipline through our review. Index Terms— Blockchain, Distributed Database, Distributed Consensus, Data Analytics, Public Ledger.
The goal of the research is to theoretically establish the variable of brilliant leadership and explain the importance of this variable and the philosophical orientation of researchers in taking it as an original variable in their research as an independent variable. The descriptive approach and theoretical framing of brilliant leadership were followed. We relied on secondary data represented by books, dissertations, dissertations, scientific research, and the information network (the Internet) as a tool for collecting data. The scientific value was represented by the importance of consolidating brilliant leadership and reviewing the most important things that were confirmed by the research and studies that dealt with this research.
... Show MoreBackground: Inflammation of the brain parenchyma brought on by a virus is known as viral encephalitis. It coexists frequently with viral meningitis and is the most prevalent kind of encephalitis. Objectives: To throw light on viral encephalitis, its types, epidemiology, symptoms and complications. Results: Although it can affect people of all ages, viral infections are the most prevalent cause of viral encephalitis, which is typically seen in young children and old people. Arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumoviruses, and coronaviruses are just a few of the viruses that have been known to cause encephalitis. Conclusion: As new viruses emerge, diagnostic techniques advan
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreDeep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec
... Show MoreIn the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and
... Show MoreThe Internet is providing vital communications between millions of individuals. It is also more and more utilized as one of the commerce tools; thus, security is of high importance for securing communications and protecting vital information. Cryptography algorithms are essential in the field of security. Brute force attacks are the major Data Encryption Standard attacks. This is the main reason that warranted the need to use the improved structure of the Data Encryption Standard algorithm. This paper proposes a new, improved structure for Data Encryption Standard to make it secure and immune to attacks. The improved structure of Data Encryption Standard was accomplished using standard Data Encryption Standard with a new way of two key gene
... Show MoreMerging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreBackground Rectal cancer is one of the most common malignant tumors of gastrointestinal tract. Combining chemotherapy with radiotherapy has a sound effect on its management.
Objectives Assessment the patterns of characterizations of rectal cancer. Evaluation of the efficacy, and long-term survival of pre-/ postoperative chemoradiation. Collecting all eligible evidence articles and summarize the results.
Methods By this systematic review and meta-analysis study, we include data of chemoradiation of rectal cancer articles from 2015 until 2019. The research was carried out at Baghdad Medical City oncology centers. Accordance with the
Metal-organic frameworks (MOFs) have emerged as revolutionary materials for developing advanced biosensors, especially for detecting reactive oxygen species (ROS) and hydrogen peroxide (H₂O₂) in biomedical applications. This comprehensive review explores the current state-of-the-art in MOF-based biosensors, covering fundamental principles, design strategies, performance features, and clinical uses. MOFs offer unique benefits, including exceptional porosity (up to 10,400 m²/g), tunable structures, biocompatibility, and natural enzyme-mimicking properties, making them ideal platforms for sensitive and selective detection of ROS and H₂O₂. Recent advances have shown significant improvements in detection capabilities, with limit
... Show More