Covid-19 is a respiratory disease similar to pneumonia that results from an infection with SARS-CoV-2, a recently identified virus that became a global pandemic in 2020. The severe cases of the disease show a cytokine storm, which is excessive, uncontrolled production of pro inflammatory cytokines. MicroRNA-155 is an epigenetic microRNA that has the ability to control pro-inflammatory responses in many diseases. We aim to determine the relationship between microRNA-155 expression and some cytokines (interleukin-6, interleukin-8, and interleukin-1β) in severe covid-19 cases. A case-control study of 235 samples was collected from 120 patients with severe covid-19 and 115 of mild covid-19 cases and healthy individuals of different sexes and ages. After RNA extraction and conversion to cDNA, RT-PCR was performed on both studied groups. The levels of studied interleukins were determined for 50 severe covid-19 patients and 40 control individuals (mild and healthy). A substantial elevation in the expression of microRNA-155 was seen in severe COVID-19 patients compared to its expression in the control group consisting of mild cases and healthy individuals. Interleukin-6, interleukin-8, and interleukin-1β also show elevated levels in severe covid-19 serum than control individuals. This investigation revealed a strong and statistically significant correlation between the expression of microRNA-155 and interleukin-6, as well as a substantial correlation between the expression of microRNA-155 and interleukin-1β. MicroRNA-155 might have a role in inducing some pro-inflammatory interleukins that leads to cytokine storm.
This study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.