The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
This study aimed to determine obesity level of some population in Baghdad by using Bio-electrical impedance analysis (BIA) and compared with anthropometric measurements such as body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR). Statistical analysis results of linear correlation coefficients for obesity indicators showed that BIA correlation 0.92 was most significant and reliable for obesity measurement.
Results of BIA method for age group 20-29 years showed that 44.4% of females were healthy body while 37.8% of males suffer from increased body fat. Results of age group 30-39 year showed that 32.6 of females were in healthy body and 42% of males were obese. In case age group 40-4
... Show MoreAbstract The Object of the study aims to identify the effectiveness of using the 7E’s learning cycle to learn movement chains on uneven bars, for this purpose, we used the method SPSS. On a sample composed (20) students on collage of physical education at the university of Baghdad Chosen as two groups experimental and control group (10) student for each group, and for data collection, we used SPSS After collecting the results and having treated them statistically, we conclude the use 7E’s learning cycle has achieved remarkable positive progress, but it has diverged between to methods, On this basis, the study recommended the necessity of applying 7E’s learning cycle strategy in learning the movement chain on uneven bar
... Show MoreThe aim of this study to identify the effect of using two strategies for active learning ( Jigsaw Strategy & Problems Solving) in learning some balanced beam's skills in artistic gymnastics for women , as well as to identify the best of the three methods (jigsaw strategy , problems solving and the traditional method) in learning some skills balance beam , the research has used the experimental methodology, and the subject included the students of the college of Physical Education and Sports Sciences / University of Baghdad / third grade and by the lot was selected (10) students for each group of groups Search three and The statistical package for social sciences (SPSS) was used means, the standard deviation and the (T.test), the one way a n
... Show MoreA study has been done to find the optimum separators pressures of separation stations. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid discharged from a higher pressure separator into the lower pressure separator. The set of working separators pressures which yield maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures which is the target of this work.
Computer model is used to find the optimum separators pressures. The model employs the Peng-Robinson equation of state for volatile oil. Application of this model shows good improvement of al
The purpose of this resesrh know (the effectiveness of cooperative lerarning implementation of floral material for calligraphy and ornamentation) To achieve the aim of the research scholar put the two zeros hypotheses: in light of the findings of the present research the researcher concluded a number of conclusions, including: -
1 - Sum strategy helps the learner to be positive in all the information and regulations, monitoring and evaluation during the learning process.
2 - This strategy helps the learner to use information and knowledge and their use in various educational positions, and to achieve better education to increase its ability to develop thinking skills and positive trends towards the article.
In light of this, the
Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id
... Show MoreThe selection of proper field survey parameters of electrical resistivity can significantly provide efficient results within a reasonable time and cost. Four electrode arrays of 2D Electric Resistivity Imaging (ERI) surveys were applied to characterize and detect subsurface archaeological bodies and to determine the appropriate array type that should be applied in the field survey. This research is to identify the subsurface features of the Borsippa archaeological site, Babylon Governorate, Middle Iraq. Synthetic modeling studies were conducted to determine the proper array and parameters for imaging the shallow subsurface features or targets. The efficiency of many array types has been tested for the detection the buried archaeolog
... Show MoreIn this work ,pure and doped(CdO)thin films with different concentration of V2O5x (0.0, 0.05, 0.1 ) wt.% have been prepared on glass substrate at room temperature using Pulse Laser Deposition technique(PLD).The focused Nd:YAG laser beam at 800 mJ with a frequency second radiation at 1064 nm (pulse width 9 ns) repetition frequency (6 Hz), for 500 laser pulses incident on the target surface At first ,The pellets of (CdO)1-x(V2O5)x at different V2O5 contents were sintered to a temperature of 773K for one hours.Then films of (CdO)1-x(V2O5)x have been prepared.The structure of the thin films was examined by using (XRD) analysis..Hall effect has been measured in orded to know the type of conductivity, Finally the solar cell and the effici
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.