The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
Strives Total Productive Maintenance to increase the overall effectiveness of the equipment through the early involvement in the design and manufacture of equipment productivity. It also operates in an environment of simultaneous engineering work on the synchronization of activities to take advantage of early information by maintenance engineers, design, operation, and that helps to reduce the faults and facilitate future maintenance tasks.
Has adopted a search in the theoretical concept of the total maintenance productivity and concurrent engineering activities carried out during which the conjunction a
... Show MoreThis paper aims at the fact that most organizations today suffer from a waste of time, effort, and cost, and they have difficulty in achieving the best performance situations and compete strongly. The researcher distributed 108 questionnaires as a statistical analyzable sample society where the sample intentionally consists of general managers, department head, and division head. The questionnaire was formulated according to the Likert scale. The use of personal interviews and observations are additional tools for data collection and a number of statistical methods is used for data analysis such as simple regression and correlation coefficient (Pearson). One of the most prominent conclusions is that the company has adequate and c
... Show MoreBall and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes
... Show MoreThe traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente
... Show MoreThe aim of the research is to find out the availability of the requirements of applying the indicators of school performance system in the public schools in Mahayel Asir educational directorate through the school planning indicator, the safety and security indicator, the active learning indicator, the student guidance indicator and determining the existence of statistically significant differences between the responses of the research community according to the variable of (scientific qualification - years of work as a principal - training courses). The questionnaire was used as a tool for data collection from the research community, which consists of all the public schools’ principals (n=180) Mahayel Asir educational directorate
... Show More
Facing industrial companies many pressures and challenges due to rapid changes in the business environment of contemporary, which requires them to do their performance look more inclusive rather than limiting performance evaluation on the financial perspective in spite of its importance, prompting companies to rethink their reality competitive through the adoption of methodologies and new philosophies to manage competitiveness of total quality management, and re-engineering of production processes, and knowledge management,... etc., as This study framework cognitive and practical "to evaluate the performance of a company Diyala General Electric Industries and how to rehabilitate
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b