The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
The purpose of this paper is to identifying some of the physical, kinetic and electrical capabilities of the working muscles of patients with simple hemiplegic cerebral palsy, preparation of special exercises (rehabilitation and water) accompanied by symmetrical electrical stimulation in the rehabilitation of working muscles for patients with simple hemiplegic cerebral palsy, and identifying the effect of exercises, especially (rehabilitation and water), accompanied by symmetrical electrical stimulation, on some physical, kinetic and electrical capabilities in rehabilitating working muscles for patients with simple hemiplegic cerebral palsy. The researcher used the experimental approach with a one-group design with two pre and post-tests du
... Show More* Khalifa E. Sharquie1, Hayder Al-Hamamy2, Adil A. Noaimi1, Mohammed A. Al-Marsomy3, Husam Ali Salman4, American Journal of Dermatology and Venereology, 2014 - Cited by 2
MJ Abbas, AK Hussein, Journal of Physical Education, 2019
In this study, the four tests employed for non-linear dependence which is Engle (1982), McLeod &Li (1983), Tsay (1986), and Hinich & Patterson (1995). To test the null hypothesis that the time series is a serially independent and identical distribution process .The linear structure is removed from the data which is represent the sales of State Company for Electrical Industries, through a pre-whitening model, AR (p) model .From The results for tests to the data is not so clear.
Unconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute
... Show MoreActive learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis
... Show MoreBackground: Diabetes mellitus and osteoporosis are two common medical disorders that are becoming more common as the population ages. T2DM patients have a higher fracture hazard, having a high BMD, which is primarily due to the raise hazard of falling. Macrophage colony-stimulating factor (M-CSF) is one of the hematopoietic growth factor family, and It plays an important function in fracture repair by attracting stem cells to the fracture site and influencing the production of hard calluses by promoting osteoclast genesis.Aims of study: The purpose of this research was to assess the blood level of macrophage colony-stimulating factor in Iraqi osteoporotic patients with and without type 2 diabetes. in addition, that M-CSF may be a predictiv
... Show More