The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
Today many people suffering from health problems like dysfunction in lungs and cardiac. These problems often require surveillance and follow up to save a patient's health, besides control diseases before progression. For that, this work has been proposed to design and developed a remote patient surveillance system, which deals with 4 medical signs (temperature, SPO2, heart rate, and Electrocardiogram ECG. An adaptive filter has been used to remove any noise from the signal, also, a simple and fast search algorithm has been designed to find the features of ECG signal such as Q,R,S, and T waves. The system performs analysis for medical signs that are used to detected abnormal values. Besides, it sends data to the Base-Stati
... Show MoreThis study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subj
... Show MoreThe primary objective of this paper is to improve a biometric authentication and classification model using the ear as a distinct part of the face since it is unchanged with time and unaffected by facial expressions. The proposed model is a new scenario for enhancing ear recognition accuracy via modifying the AdaBoost algorithm to optimize adaptive learning. To overcome the limitation of image illumination, occlusion, and problems of image registration, the Scale-invariant feature transform technique was used to extract features. Various consecutive phases were used to improve classification accuracy. These phases are image acquisition, preprocessing, filtering, smoothing, and feature extraction. To assess the proposed
... Show MoreThis research aims to investigate and improve multi-user free space optic systems (FSO) based on a hybrid subcarrier multiplexing spectral amplitude coding-optical code division multiple access (SCM-SAC-OCDMA) technique using MS code with a direct decoding technique. The performance is observed under different weather conditions including clear, rain, and haze conditions. The investigation includes analyzing the proposed system mathematically using MATLAB and OptiSystem software. The simulation is carried out using a laser diode. Furthermore, the performances of the MS code in terms of angles of bit rate, beam divergence and noise are evaluated based on bit error rate (BER), received
Cryptography is a major concern in communication systems. IoE technology is a new trend of smart systems based on various constrained devices. Lightweight cryptographic algorithms are mainly solved the most security concern of constrained devices and IoE systems. On the other hand, most lightweight algorithms are suffering from the trade-off between complexity and performance. Moreover, the strength of the cryptosystems, including the speed of the algorithm and the complexity of the system against the cryptanalysis. A chaotic system is based on nonlinear dynamic equations that are sensitive to initial conditions and produce high randomness which is a good choice for cryptosystems. In this work, we proposed a new five-dimensional of a chaoti
... Show MoreStenography is the art of hiding the very presence of communication by embedding secret message into innocuous looking cover document, such as digital image, videos, sound files, and other computer files that contain perceptually irrelevant or redundant information as covers or carriers to hide secret messages.
In this paper, a new Least Significant Bit (LSB) nonsequential embedding technique in wave audio files is introduced. To support the immunity of proposed hiding system, and in order to recover some weak aspect inherent with the pure implementation of stego-systems, some auxiliary processes were suggested and investigated including the use of hidden text jumping process and stream ciphering algorithm. Besides, the suggested
... Show MoreIn this work was prepared three different types of modified screen printed carbon electrode (SPCEs) with drops casted method, the used carbone nanomaterials were the MWCNT, functionalized –MWCNT (f-MWCNT) and After several experiments were made to find an appropriate ratio to make good GOT/f-MWCNT nanocomposite, and found the suspension mixture (1:1) from GOT/f-MWCNT (f-MWCNT-GOT). The electrical and physical properties were performed with cyclic voltammeter technique, and studied the maximum current response, the effective surface area, effect of the pH value and the determination of active surface area for MWCNT-SPCE , f-MWCNT-SPCE and f-MWCNT-GOT/SPCE as (0.04 cm2), (0.119 cm2) and (0.115 cm2) respectively, the surface coverage concent
... Show MoreThis researchs the preparation of particulate polymer composites from Alkyd resin and Iraqi Burn Kaolin which were added as (20%,30%,40%,50%)and comparing with the polymer. It studied Thermal conductivity and Dielectric strength for both of the Alkyd resin and the Composite Material. The result showed an increase in Dielectric strength after adding the Iraqi Burn Kaolin , also the Thermal conductivity was increased by adding the Iraqi Burn Kaolin .
Cytokines are signaling molecules between inflammatory cells that play a significant role in the pathogenesis of a disease. Among these cytokines are interleukins (ILs) 17A and 33, and accordingly, the current case-control study sought to investigate the role of each of the two cytokines in the risk of developing multiple sclerosis (MS). Sixty-eight relapsing-remitting MS (RRMS) Iraqi patients and twenty healthy individuals (control group) were enrolled. Enzyme linked immunosorbent assay (ELISA) kits were used to determine serum levels of IL-17A and IL-33. Results revealed that IL-17A and IL-33 levels were significantly higher in MS patients than in controls (14.1 ± 4.5 vs. 7.5 ± 3.8 pg/mL; p < 0.001 and 65.3 ± 16
... Show More