The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreIn many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat
... Show MoreThere are many diseases that affect the arteries, especially those related to their elasticity and stiffness, and they can be guessed by estimating and calculating the modulus of elasticity. Hence, the accurate calculation of the elastic modulus leads to an accurate assessment of these diseases, especially in their early stages, which can contribute to the treatment of these diseases early. Most of the calculations used the one-dimensional (1D) modulus of elasticity. From a mechanical point of view, the stresses to which the artery is subjected are not one-dimensional, but three-dimensional. Therefore, estimating at least a two-dimensional (2D) modulus of elasticity will necessarily be more accurate. To the knowledge of researchers, there i
... Show MoreBackground: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has
... Show MoreLean Six Sigma methodologies and Ergonomics principles are the main pillars of this work given their importance in the implementation of continuous improvement in assembly workstations design. When looking at the introduction of the Ergonomics that has been affected by the integration of the Lean and Six Sigma for improvements, it is necessary to understand why these methodologies belong to each other and how they can be handled in the industrial field. The aim of the work seeks towards the impact of analyzing the integration of the basics tools of Lean and Six Sigma that enhanced Ergonomics highlighted the importance of using the priority matrix in the selection of the priority criteria. Two models of a system based on
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreThis work presents a five-period chaotic system called the Duffing system, in which the effect of changing the initial conditions and system parameters d, g and w, on the behavior of the chaotic system, is studied. This work provides a complete analysis of system properties such as time series, attractors, and Fast Fourier Transformation Spectrum (FFT). The system shows periodic behavior when the initial conditions xi and yi equal 0.8 and 0, respectively, then the system becomes quasi-chaotic when the initial conditions xi and yi equal 0 and 0, and when the system parameters d, g and w equal 0.02, 8 and 0.09. Finally, the system exhibits hyperchaotic behavior at the first two conditions, 0 and 0, and the bandwidth of the chaotic
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
A large number of natural or synthetic dyes have been removed from both national and international lists of permitted food colors because of their mutagenic or carcinogenic activity. Therefore, this study aimed to use the Random Amplified Polymorphic DNA-Based Polymerase Chain Reaction (RAPD-PCR) assay as a feasible method to evaluate the ability of some food colors as genotoxin-induced DNA damage and mutations. Lactiplantibacillus plantarum was used as a bioindicator to determine the genotoxic effects by RAPD-PCR using M13 primer after treatment with some synthetic dyes currently used as food color additives, including Sunset Yellow, Carmoisine, and Tartrazine. Besides qualitative analysis, the bioinformatic GelJ software was used for clus
... Show More