Preferred Language
Articles
/
tRc3No8BVTCNdQwCH2L5
Simulating Particle Swarm Optimization Algorithm to Estimate Likelihood Function of ARMA(1, 1) Model
...Show More Authors

Crossref
Publication Date
Fri Feb 14 2014
Journal Name
International Journal Of Computer Applications
Parallelizing RSA Algorithm on Multicore CPU and GPU
...Show More Authors

View Publication
Crossref (10)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Multifactor Algorithm for Test Case Selection and Ordering
...Show More Authors

Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls sh

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Oct 19 2024
Journal Name
Iraqi Statisticians Journal
Forecasting Gold prices by hybrid ANFIS-based algorithm
...Show More Authors

In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca

... Show More
View Publication
Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Study of different geostatistical methods to model formation porosity (Cast study of Zubair formation in Luhais oil field)
...Show More Authors
Abstract<p>This study is concerned with making comparison in using different geostatistical methods for porosity distribution of upper shale member - Zubair formation in Luhais oil field which was chosen to study.</p><p>Kriging, Gaussian random function simulation and sequential Gaussian simulation geostatistical methods were adopted in this study. After preparing all needed data which are contour map, well heads of 12 wells, well tops and porosity from CPI log. Petrel software 2009 was used for porosity distribution of mentioned formation in methods that are showed above. Comparisons were made among these three methods in order to choose the best one, the comparing cri</p> ... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Journal Of Economics And Administrative Sciences
Seemingly Unrelated Regression Model to Measure the Profitability of Some Iraqi Private Commercial Banks with Presence of Outliers
...Show More Authors

A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjus

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 09 2021
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Numerical Simulation of Gas Lift Optimization Using Artificial Intelligence for a Middle Eastern Oil Field
...Show More Authors
Abstract<p>Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit</p> ... Show More
View Publication
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Choose the best model to measure the impact of human capital on labor productivityIn the manufacturing sector in Iraq
...Show More Authors

In this paper all possible regressions procedure as well as stepwise regression procedure were applied to select the best regression equation that explain the effect of human capital represented by different levels of human cadres on the productivity of the processing industries sector in Iraq by employing the data of a time series consisting of 21 years period. The statistical program SPSS was used to perform the required calculations.

View Publication Preview PDF
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Drilling Optimization by Using Advanced Drilling Techniques in Buzurgan Oil Field
...Show More Authors

Efficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pres

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Estimation of nonparametric regression function using shrinkage wavelet and different mother functions
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Jun 12 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Study the Effects of Anadrol Overdose on Liver Function in Male Rats
...Show More Authors

 

Anadrol (oxymetholone) is an active androgenic anabolic steroid that has been clinically studied in numerous diseases since the 1960s. It is used in the treatment of anemia and the replacement of male sex steroids. Unfortunately, in attempts to improve physical performance, Anadrol could be misused by athletes, that can lead to poisoning contributes to hepatotoxicity.

The aim of this study was to investigate the impact of anadrol on the liver function in rat model, via assessment of liver enzymes and histopathological study.

A forty male rats, weights about (200-300 gm), aged 8-12 weeks, after acclimatization, the rats were ‎randomly divided into four groups (10 rats in each group) as follow: control group (in w

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref