Preferred Language
Articles
/
tRc3No8BVTCNdQwCH2L5
Simulating Particle Swarm Optimization Algorithm to Estimate Likelihood Function of ARMA(1, 1) Model
...Show More Authors

Crossref
Publication Date
Sun Apr 16 2023
Journal Name
Iraqi Journal For Computer Science And Mathematics
Some Methods to Estimate the Parameters of Generalized Exponential Rayleigh Model by Simulation
...Show More Authors

This paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Al-kindy College Medical Journal
Association of HLA-DRB1/DQB1 Alleles and Genetic Susceptibility to Type 1 Diabetes Mellitus
...Show More Authors

Objective: This study was conducted to identify the association of HLA-DRB1/DQB1 genes with the susceptibility or resistance to type 1 diabetes mellitus (T1D) among patients between the ages of five and eighteen.

Subjects and Methods: The study included 200 Sudanese participants, ages ranging from 5 to 18. One hundred participants were healthy non-diabetic as the control group and 100 with T1D as the case group. The investigation was carried out in Khartoum state. The selection of patients with T1D was from diabetic centers and hospitals. The allele-specific-refractory mutation system-polymerase chain reaction (ARMS-PCR) techniq

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Nonparametric Regression Function Using Canonical Kernel
...Show More Authors

    This research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel  and give the sound amount of smoothing .

We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimate Kernel Ridge Regression Function in Multiple Regression
...Show More Authors

             In general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models  precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 01 2007
Journal Name
Journal Of Economics And Administrative Sciences
Alternative distribution to estimate the Dose – Response model in bioassay excrement
...Show More Authors

 Alternative  distribution  to estimate the Dose – Response  model in bioassay  excrement

This research   concern to study five different distribution (Probit , Logistic, Arc sine , extreme value , One hit  ), to estimate  dose –response model by using m.l.e  and probit method This is done by determining different  weights in each  distribution in addition find all particular statistics for vital model . 

View Publication Preview PDF
Crossref
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
The Simulation Technique to Estimate the Parameters of Generalized Exponential Rayleigh Model
...Show More Authors

     The paper shows how to estimate the three parameters of the generalized exponential Rayleigh distribution by utilizing the three estimation methods, namely, the moment employing estimation method (MEM), ordinary least squares estimation method (OLSEM),  and maximum entropy estimation method (MEEM). The simulation technique is used for all these estimation methods to find the parameters for the generalized exponential Rayleigh distribution. In order to find the best method, we use the mean squares error criterion. Finally, in order to extract the experimental results, one of object oriented programming languages visual basic. net was used

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between method penalized quasi- likelihood and Marginal quasi-likelihood in estimating parameters of the multilevel binary model
...Show More Authors

Multilevel models are among the most important models widely used in the application and analysis of data that are characterized by the fact that observations take a hierarchical form, In our research we examined the multilevel logistic regression model (intercept random and slope random model) , here the importance of the research highlights that the usual regression models calculate the total variance of the model and its inability to read variance and variations between levels ,however in the case of multi-level regression models, the calculation of  the total variance is inaccurate and therefore these models calculate the variations for each level of the model, Where the research aims to estimate the parameters of this m

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Int. J. Nonlinear Anal. Appl
Adaptive 1-D polynomial coding to compress color image with C421
...Show More Authors

Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to compare between parametric and nonparametric transfer function model
...Show More Authors

In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods  local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t

... Show More
View Publication Preview PDF
Crossref