In this paper, by using the Banach fixed point theorem, we prove the existence and uniqueness theorem of a fractional Volterra integral equation in the space of Lebesgue integrable ð¿1(ð‘…+) on unbounded interval [0,∞).
The present investigation considers the effect of curing temperatures (30, 40, and 50˚C) and curing compound method on compressive strength development of high performance concrete, and compares the results with concrete cured at standard conditions and curing temperature (21˚C). The experimental results showed that at early ages, the rate of strength development at high curing temperature is greater than at lower curing temperature, the maximum increasing percentage in compressive strength is 10.83% at 50C˚ compared with 21C˚ in 7days curing age. However, at later ages, the strength achieved at higher curing temperature has been less, and the maximum percentage of reduction has been 5.70% at curing temperature 50C˚ compared with 21
... Show MoreThe Digital Elevation Model (DEM) has been known as a quantitative description of the surface of the Earth, which provides essential information about the terrain. DEMs are significant information sources for a number of practical applications that need surface elevation data. The open-source DEM datasets, such as the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), and the Advanced Land Observing Satellite (ALOS) usually have approximately low accuracy and coarser resolution. The errors in many datasets of DEMs have already been generally examined for their importance, where their quality could be affected within different aspects, including the types of sensors, algor
... Show MoreIn this paper, the time-fractional Fisher’s equation (TFFE) is considered to exam the analytical solution using the Laplace q-Homotopy analysis method (Lq-HAM)â€. The Lq-HAM is a combined form of q-homotopy analysis method (q-HAM) and Laplace transform. The aim of utilizing the Laplace transform is to outdo the shortage that is mainly caused by unfulfilled conditions in the other analytical methods. The results show that the analytical solution converges very rapidly to the exact solution.
The current study examined the effect of different sample sizes to detect the Item differential functioning (DIF). The study has used three different sizes of the samples (300, 500, 1000), as well as to test a component of twenty polytomous items, where each item has five categories. They were used Graded Response Model as a single polytomous item response theory model to estimate items and individuals’ parameters. The study has used the Mantel-Haenszel (MH) way to detect (DIF) through each case for the different samples. The results of the study showed the inverse relationship between the sample size and the number of items, which showed a differential performer.
The nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solutio
... Show More