The bearing capacity of layered soil studies was carried out with various approaches such as experimental, theoretical, numerical, and combination of them. This work is focused on the settlement and bearing capacity of shallow foundations subjected to the vertical load placed on the surface of layered soils. The experimental part was performed by manufacturing soil cubic container (570 mm x 570 mm x 570 mm). A model square footing of width 60 mm was placed at the surface of the soil bed. The relative density of sand was constant at 60%, and the clay was prepared with a density of 19.2 (kN/m3) and water content of 14.6%. PLAXIS 3D FEM was used to simulate the experimental tests and performing a parametric study. The results showed that there was a good agreement between experimental work and corresponding numerical results. The value of the bearing capacity was obtained from load-settlement curve. The bearing capacity of layered soil showed higher value for footing resting on clay over sand soil. It was found that an increase in the ultimate bearing capacity regarding the clay over sand with increasing in first layer thickness ratio; while, a decrease has been indicated for the sand over clay. The critical depth was found at H = (2-3m), and the failure pattern was not unique for layered soil.
In this paper, the penetration of the stone column was investigated in order to get the minimum length of the stone column above which the increase in length has little advantage. The effect of using different materials in column are also studied. The material used is granular of different angle of internal friction (). The results of the investigation indicated that the effect of stone column remains constant when the ratio of the thickness of the soft clay layer to the stone column’s diameter is more than 15. The results also indicated that a pronounced effect is obtained when the angle of internal friction of the stone column material is increased.
The reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % an
... Show MoreThe nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
The existing study aimed to assess four soil moisture sensors’ capacitive (WH51 and SKU: S EN0193) and resistive (Yl69 and IC Station) abilities, which are affordable and medium-priced for their accuracy in six common soil types in the central region of Iraq. The readings’ calibration for the soil moisture sensor devices continued through two gravimetric methods. The first depended on the protocols’ database, while the second was the traditional calibration method. The second method recorded the lowest analysis error compared with the first. The moderate-cost sensor WH51 showed the lowest standard error (SE), MAD , and RMSE and the highest R² in both methods. The performance accuracy of WH51 was close to readings shown by the manufac
... Show MoreAbstract
This study was conducted by using soil map of LD7 project to interpret the
distribution and shapes of map units by using the index of compaction as an
index of map unit shape explanation. Where there were wide and varied
ranges of compaction index of map units, where the maximum value was
0.892 for MF9 map unit and the lower value was 0.010 for same map unit.
MF9 has wide range appearance of index of compaction after those indices
were statistically analyzed by using cluster analysis to group the similar
ranges together to ease using their values, so the unit MF9 was considered as
key map unit that appears in the soils of LD7 project which may be used to
expect another map units existence in area of
Actinomycetes are free, spore-forming, high (G+C) ratio (>55%) saprophytic microorganisms that are widely distributed in most soils, colonize plants, and are prevalent in water. This is frequently accompanied by the production of filament airborne mycelium. Actinomycetes are well-known microcolonies for creating antibiotics and other critical bioactive components that are beneficial to humans. Approximately 70% to 80% of commercially available medications and antiviral active compounds have been synthesized so far. Secondary metabolites produced by microbes have the potential to be used in a variety of sectors, including antimicrobial agents, enzyme technology, pigment manufacture, antitumor agents against cancer cells, and toxin pr
... Show MoreSoil wetted pattern from a subsurface drip plays great importance in the design of subsurface drip irrigation (SDI) system for delivering the required water directly to the roots of the plant. An equation to estimate the dimensions of the wetted area in soil are taking into account water uptake by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, three soil textures namely loamy sand, sandy loam, and loam soil were used with three different types of crops tomato, pepper, and cucumber, respectively, and different values of drip discharge, drip depth, and initial soil moisture content were proposed. The soil wetting patterns were obtained at every thirty minutes for a total time of irrigation equ
... Show More